Skip to main content
Log in

Fractal and multifractal analysis of In-doped ZnO thin films deposited on glass, ITO, and silicon substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Indium-doped zinc oxide (IZO) thin films have been deposited on glass (IZO/glass), ITO (IZO/ITO), and silicon (IZO/Si) substrates using sol–gel spin coating method. Glancing angle X-ray diffraction has been used to verify phase purity, average grain size, and microcrystalline stress of the annealed films. Effect of substrates on surface morphology is explicitly investigated using the conventional statistical techniques along with nonlinear fractal and multifractal geometrical analysis. The root-mean-square surface roughness value is the lowest in IZO/glass films and increases in IZO/ITO films and the highest in IZO/Si films. Fractal and multifractal formalism acts as a scale-independent microscopic analytical tool for surface analysis. All IZO films show fractal and multifractal behaviour. The fractal parameters such as fractal dimensions and Hurst exponents are different for films deposited on different substrates and, thus, able to characterize surface morphology precisely. Hurst exponent values of IZO films indicate that although IZO/Si films have highest vertical roughness, it has strongly correlated (highest self-similarity) surface morphology than other two films deposited on glass and ITO substrates. Inhomogeneity in scaling exponents could be better understood with the help of multifractal formalism. The difference of fractal dimensions in all IZO films deposited on glass, ITO, and Si substrates is very small (almost close to zero). Therefore, there is very little multifractality exist in those film surfaces. Width of multifractal spectrum is the largest in IZO/Si and the smallest (also similar) in IZO/ITO and IZO/glass films, indicating that multifractallity in IZO/Si film is more prominent. A quantitative information about the surface morphology has been provided by inferring multifractal parameters. Detailed fractal and multifractal formalism of surface morphology may find its importance in understanding various surface-based device fabrication and performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U. Ozgur, D. Hofstetter, H. Morkoc, ZnO devices and applications: a review of current status and future prospects. ‎Proc. IEEE 98(7), 1255–1268 (2010)

    Google Scholar 

  2. J. Lu, Z. Shi, Y. Wang, Y. Lin, Q. Zhu, Z. Tian, J. Dai, S. Wang, C. Xu, Plasmon-enhanced electrically light-emitting from ZnO nanorod arrays/p-GaN heterostructure devices. ‎Sci. Rep 6, 25645 (2016)

    ADS  Google Scholar 

  3. M. Hussain, M.A. Abbasi, A. Khan, O. Nur, M. Willander, Comparative study of energy harvesting from ZnO nanorods using different flexible substrates. Energy Harvest. Syst. 1–2, 19–26 (2014)

    Google Scholar 

  4. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Synthesis and characterization of zinc oxide thin films for optoelectronic applications. Heliyon 3, e00285 (2017)

    Article  Google Scholar 

  5. V. Balaprakash, P. Gowrisankar, S. Sudha, R. Rajkumar, Aluminum doped ZnO transparent conducting thin films prepared by sol-gel dip coating technique for solar cells and optoelectronic applications. Mater. Technol. 33(6), 414–420 (2018)

    Article  Google Scholar 

  6. Q. Boyer, S. Duluard, C. Tenailleau, F. Ansart, V. Turq, J.P. Bonino, Functionalized superhydrophobic coatings with micro-/nanostructured ZnO particles in a sol–gel matrix. J. Mater. Sci. 52, 12677–12688 (2017)

    Article  ADS  Google Scholar 

  7. N. Mufti, D. Arista, M. Diantoro, A. Fuad, A. Taufiq, Sunaryono, the effect of thickness of ZnO thin films on hydrophobic self-cleaning properties. IOP Conf. Ser. Mater. Sci. Eng. 202, 012006 (2017)

    Article  Google Scholar 

  8. A.J. Mughal, B. Carberry, J.S. Speck, S. Nakamura, S.P. Denbaars, Structural and optical properties of group III doped hydrothermal ZnO thin films. J. Electron. Mater. 46(3), 1821–1825 (2017)

    Article  ADS  Google Scholar 

  9. B. Paul, B. Singh, S. Ghosh, A. Roy, A comparative study on electrical and optical properties of group III (Al, Ga, In) doped ZnO. Thin Solid Films 603, 21–28 (2016)

    Article  ADS  Google Scholar 

  10. A. Hafdallah, F. Yanineb, M.S. Aida, N. Attaf, In doped ZnO thin films. J. Alloys Compd. 509, 7267–7270 (2011)

    Article  Google Scholar 

  11. E. Lunaarredondoa, A. Maldonadoa, R. Asomozaa, D.R. Acostab, M. Melendezlirac, M. Delalolvera. Indium-doped ZnO thin films deposited by the sol–gel technique. Thin Solid Films 490, 132–136 (2005)

    Article  ADS  Google Scholar 

  12. H. Sun, S.-U. Jen, S.-C. Chen, S.-S. Ye, X. Wang, The electrical stability of In-doped ZnO thin films deposited by RF sputtering. J. Phys. D Appl. Phys. 50, 045102 (2017)

    Article  ADS  Google Scholar 

  13. M. Yamamoto, N. Nishikawa, H. Mayama, Y. Nonomura, S. Yokojima, S. Nakamura, K. Uchida, Theoretical explanation of the lotus effect: superhydrophobic property changes by removal of nanostructures from the surface of a lotus leaf. Langmuir 31(26), 7355–7363 (2015)

    Article  Google Scholar 

  14. S.S. Latthe, C. Terashima, K. Nakata, A. Fujishima, Superhydrophobic surfaces developed by mimicking hierarchical surface morphology of lotus leaf. Molecules 19, 4256–4283 (2014)

    Article  Google Scholar 

  15. G. Hübschen, I. Altpeter, R. Tschuncky, H.-G. Herrmann, Materials Characterization Using Nondestructive Evaluation (NDE) Methods (Woodhead Publishing, New York, 2016)

    Google Scholar 

  16. P. Hall, S. Davies, On direction-invariance of fractal dimension on a surface. Appl. Phys. A 60, 271–274 (1995)

    Article  ADS  Google Scholar 

  17. Y.R. Jeng, P.C. Tsai, T.H. Fang, Nanomeasurement and fractal analysis of PZT ferroelectric thin films by atomic force microscopy. Microelectron. Eng. 65, 406 (2003)

    Article  Google Scholar 

  18. A. Mannelqvist, M.R. Groth, Comparison of fractal analyses methods and fractal dimension for pre-treated stainless steel surfaces and the correlation to adhesive joint strength. Appl. Phys. A 73, 347–355 (2001)

    Article  ADS  Google Scholar 

  19. D. Raoufi, Fractal analyses of ITO thin films: a study based on power spectral density. Phys. B 405, 451–455 (2010)

    Article  ADS  Google Scholar 

  20. D. Dallaeva, S. Talu, S. Stach, P. Skarvada, P. Tomanek, L. Grmela, AFM imaging and fractal analysis of surface roughness of AlN epilayers on sapphire substrates. Appl. Surf. Sci. 312, 81–86 (2014)

    Article  ADS  Google Scholar 

  21. L. Chen, J. Xu, P. Fleming, J.D. Holmes, M.A. Morris, Dynamic stable nanostructured metal oxide fractal films grown on flat substrates. J. Phys. Chem. C 112, 14286–14291 (2008)

    Article  Google Scholar 

  22. J. Arjomandi, D. Raoufi, F. Ghamari, Surface characterization and morphology of conducting polypyrrole thin films during polymer growth on ITO glass electrode. J. Phys. Chem. C 120(32), 18055–18065 (2016)

    Article  Google Scholar 

  23. N. Xie, W. Shao, L. Feng, L. Lv, L. Zhen, Fractal analysis of disordered conductor–insulator composites with different conductor backbone structures near percolation threshold. J. Phys. Chem. C 116, 19517–19525 (2012)

    Article  Google Scholar 

  24. Z. Chen, D. Pan, B. Zhao, G. Ding, Z. Jiao, M. Wu, C.-H. Shek, C.M.L. Wu, J.K.L. Lai, Insight on fractal assessment strategies for tin dioxide thin films. ACS Nano 4(2), 1202–1208 (2010)

    Article  Google Scholar 

  25. N. Saxena, T. Naik, S. Paria, Organization of SiO2 and TiO2 nanoparticles into fractal patterns on glass surface for the generation of superhydrophilicity. J. Phys. Chem. C 121(4), 2428–2436 (2017)

    Article  Google Scholar 

  26. H. Awada, B. Grignard, C. Jerome, A. Vaillant, J.D. Coninck, B. Nysten, A.M. Jonas, Correlation between superhydrophobicity and the power spectral density of randomly rough surfaces. Langmuir 26(23), 17798–17803 (2010)

    Article  Google Scholar 

  27. R. Jain, R. Pitchumani, Fractal model for wettability of rough surfaces. Langmuir 33, 7181–7190 (2017)

    Article  Google Scholar 

  28. U.B. Singh, R.P. Yadav, R.K. Pandey, D.C. Agarwal, C. Pannu, A.K. Mittal, Insight mechanisms of surface structuring and wettability of ion treated Ag thin films. J. Phys. Chem. C 120(10), 5755–5763 (2016)

    Article  Google Scholar 

  29. R.P. Yadav, M. Kumar, A.K. Mittal, S. Dwivedi, A.C. Pandey, On the scaling law analysis of nanodimensional LiF thin film surfaces. Mater. Lett. 126, 123–125 (2014)

    Article  Google Scholar 

  30. Ș Țălu, R.P. Yadav, A.K. Mittal, A. Achour, C. Luna, M. Mardani, S. Solaymani, A. Arman, F. Hafezi, A. Ahmadpourian, S. Naderi, K. Saghi, A. Méndez, G. Trejo, Application of Mie theory and fractal models to determine the optical and surface roughness of Ag–Cu thin films. Opt Quant Electron 49, 256 (2017)

    Article  Google Scholar 

  31. R.P. Yadav, D.C. Agarwal, M. Kumar, P. Rajput, D.S. Tomar, S.N. Pandey, P.K. Priya, A.K. Mittal, Effect of angle of deposition on the Fractal properties of ZnO thin film surface. Appl. Surf. Sci. 416, 51–58 (2017)

    Article  ADS  Google Scholar 

  32. R.P. Yadav, T. Kumar, A.K. Mittal, S. Dwivedi, D. Kanjilal, Fractal characterization of the silicon surfaces produced by ion beam irradiation of varying fluences. Appl. Surf. Sci. 347, 706–712 (2015)

    Article  ADS  Google Scholar 

  33. U.B. Singh, R.P. Yadav, R. Kumar, S. Ojha, A.K. Mittal, S. Ghosh, F. Singh, Nanostructuring and wettability of ion treated Au thin films. ‎J. Appl. Phys 122, 185303 (2017)

    Article  ADS  Google Scholar 

  34. R.P. Yadav, U.B. Singh, A.K. Mittal, S. Dwivedi, Investigating the nanostructured gold thin films using the multifractal analysis. Appl. Phys. A 117, 2159–2166 (2014)

    Article  ADS  Google Scholar 

  35. R.P. Yadav, M. Kumar, A.K. Mittal, A.C. Pandey, Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces. Chaos 25, 083115 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R.P. Yadav, R.K. Pandey, A.K. Mittal, S. Dwivedi, A.C. Pandey, Multifractal analysis of sputtered CaF2 thin films. Surf. Interface Anal. 45, 1775–1780 (2013)

    Article  Google Scholar 

  37. S. Hosseinabadi, F. Abrinaei, M. Shirazi, Statistical and fractal features of nanocrystalline AZO thin films. Phys. A 481, 11–22 (2017)

    Article  Google Scholar 

  38. M. Nasehnejad, M.G. Shahraki, G. Nabiyouni, Atomic force microscopy study, kinetic roughening and multifractal analysis of electrodeposited silver films. Appl. Surf. Sci. 389, 735–741 (2016)

    Article  ADS  Google Scholar 

  39. R.P. Yadava, S. Dwivedi, A.K. Mittal, M. Kumar, A.C. Pandey, Fractal and multifractal analysis of LiF thin film surface. Appl. Surf. Sci. 261, 547–553 (2012)

    Article  ADS  Google Scholar 

  40. R.P. Yadav, S. Dwivedi, A.K. Mittal, M. Kumar, A.C. Pandey, Analyzing the LiF thin films deposited at different substrate temperatures using multifractal technique. Thin Solid Films 562, 126–131 (2014)

    Article  ADS  Google Scholar 

  41. International Centre of Diffraction Data, Powder Diffraction File, JCPDS File No 00-036-1451 (1996)

  42. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  43. R.K. Pandey, K. Ghosh, S. Mishra, J.P. Bange, P.K. Bajpai, D.K. Gautam, Effect of film thickness on structural and optical properties of sol–gel spin coated aluminum doped zinc oxide (Al:ZnO) thin films. Mater. Res. Express 5(8), 086408 (2018)

    Article  ADS  Google Scholar 

  44. G.A. Kumar, M.V.R. Reddy, K.N. Reddy, Structural and optical properties ZnO thin films grown on various substrates by RF magnetron sputtering. IOP Conf. Ser. Mater. Sci. Eng. 73, 012133 (2015)

    Article  Google Scholar 

  45. W. Chebil, A. Fouzri, B. Azeza, N. Sakly, R. Mghaieth, A. Lusson, V. Sallet, Influence of substrate on structural, morphological and optical properties of ZnO films grown by SILAR method. Bull. Mater. Sci. 37(6), 1283–1291 (2014)

    Article  Google Scholar 

  46. V. Craciun, D. Craciun, X. Wang, T.J. Anderson, R.K. Singh, Transparent and conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures. J. Optoelectron. Adv. M. 5(2), 401–408 (2003)

    Google Scholar 

  47. I. Ozena, M.A. Gulgun, Residual stress relaxation and microstructure in ZnO thin films. Adv Sci Tech. 45, 1316–1321 (2006)

    Article  Google Scholar 

  48. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998)

    Article  ADS  Google Scholar 

  49. S.J. Kwon, J.-H. Park, J.-G. Park, Wrinkling of a sol-gel-derived thin film. Phys. Rev. E 71, 011604 (2005)

    Article  ADS  Google Scholar 

  50. R. Shivanna, S. Rajaram, K.S. Narayan, Interface engineering for efficient fullerene-free organic solar cells. Appl. Phys. Lett. 106, 123301 (2015)

    Article  ADS  Google Scholar 

  51. M. Rapso, Q. Ferreira, P.A. Ribeiro, A Guide for Atomic Force Microscopy Analysis of soft-condensed Matter (Modern Research and Educational Topics in Microscopy). ed A. Merdez-Vilas et al. (Formatex Spain, 2010) p 758

  52. R. Mohammadigharehbagh, S. Pat, S. Ozen, H.H. Yudar, S. Korkmaz, Investigation of the optical properties of the indium-doped ZnO thin films deposited by a thermionic vacuum arc. Optik 157, 667–674 (2018)

    Article  ADS  Google Scholar 

  53. Y. Zhao, G. Ching, T. Wang, M. Lu, Characterization of Amorphous and Crystalline Rough Surface: Principle and Applications (Academic Press, New York, 2001)

    Google Scholar 

  54. M. Pelliccione, T.-M. Lu, Evolution of Thin Film Morphology Modeling and Simulations (Springer, New York, 2008)

    Google Scholar 

  55. M.B. Khamesee, Y. Kurosaki, M. Matsui, K. Murai, Nanofractal analysis of material surfaces using atomic force microscopy. Mater. Trans. 45(2), 469 (2004)

    Article  Google Scholar 

  56. B.B. Mandelbrot, J.W. Van Ness, Fractional brownian motions, fractional noises and applications. SIAM Rev. 4, 422 (1968)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. A.N.D. Posadas, D. Gimenez, R. Quiroz, R. Protz, Multifractal characterization of soil pore systems. Soil Sci. Soc. Am. J. 67, 1361–1369 (2003)

    Article  ADS  Google Scholar 

  58. A. Carbone, Algorithm to estimate the Hurst exponent of high-dimensional fractals. Phys. Rev. E 76, 056703 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  59. T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. A.B. Chhabra, C. Meneveu, R.V. Jensen, K.R. Sreenivasan, Direct determination of the f(α) singularity spectrum and its application to fully developed turbulence. Phys. Rev. A 40, 5284 (1989)

    Article  ADS  Google Scholar 

  61. A.B. Chhabra, R.V. Jensen, Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 62, 1327 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  62. G. Korvin, Fractal Methods in the Earth Science (Elsevier, Amsterdam, 1992)

    Google Scholar 

  63. T. Vicsek, Fractal Growth Phenomena, 2nd edn. (Word Scientific Publishing Co., Singapore, 1992)

    Book  MATH  Google Scholar 

  64. H.B. Callen, Thermodynamics and an Introduction to Thermo-Statistics, 2nd edn. (John Wiley & Sons, New York, 1985)

    MATH  Google Scholar 

  65. Z.W. Chen, J.K.L. Lai, C.H. Shek, Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition. ‎Phys. Lett. A. 345, 218–223 (2005)

    Article  ADS  Google Scholar 

  66. D. Raoufi, H.R. Fallah, A. Kiasatpour, A.S.H. Rozatian, Multifractal analysis of ITO thin films prepared by electron beam deposition method. Appl. Surf. Sci. 254, 2168–2173 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author KG thanks UGC, India, for providing fellowship to carry out this research work. Both authors are thankful to Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur, India, for providing synthesis and characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Pandey, R.K. Fractal and multifractal analysis of In-doped ZnO thin films deposited on glass, ITO, and silicon substrates. Appl. Phys. A 125, 98 (2019). https://doi.org/10.1007/s00339-019-2398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2398-y

Navigation