Skip to main content
Log in

Structural and electrical properties of 0.7(BiSmxFe1−xO3)–0.3(PbTiO3) composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The 70% BiFeO3 (BFO) with 30% PbTiO3 composite has attracted attention of many researchers, as it falls under MPB (morphotropic phase boundary) region. The studied composites 0.7(BiSmxFe1−xO3)–0.3(PbTiO3) for x = 0.0, 0.05, 0.10, 0.15, 0.20 were synthesized through the conventional route of solid-state reaction. The crystallization, symmetry (rhombohedral), and structural confirmation of the composites have been made through X-ray diffraction technique. The surface morphology of the natural surface is observed employing scanning electron microscope. The dielectric, impedance, and conductivity study reveals the electrical behavior of the samples. The dielectric permittivity is seen to rise with the increase in doping concentration. The high value of dielectric constant (7390.5) found for 10 wt% doping concentration of samarium. The composites are found to show negative temperature coefficient of resistivity behavior in the temperature range (275–350 °C). The relaxation phenomenon is reflected through impedance plots. From these results, it may be concluded that this material may be used for different high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Bhattacharjee. S. Tripathi, D. Pandey, Appl. Phys. Lett. 91, 042903 (2007)

    Article  ADS  Google Scholar 

  2. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  3. R.E. Cohen, Nature 358, 136 (1992)

    Article  ADS  Google Scholar 

  4. M. De, S. Hajra, R. Tiwari, S. Sahoo, R.N.P. Choudhary, H.S. Tiwari, Ceram. Int. 44, 11792–11797 (2018)

    Article  Google Scholar 

  5. A. Lahmar, S. Habouti, M. Dietze, C.H. Solterbeck, M. Es-Souni, Appl. Phys. Lett. 94, 012903 (2009)

    Article  ADS  Google Scholar 

  6. J. Silva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, Integrated Ferroelectr. 126, 47–59 (2011)

    Article  Google Scholar 

  7. G. Shirane, H. Hoshino, J. Phys. Soc. Jpn. 6, 265–270 (1951)

    Article  ADS  Google Scholar 

  8. M.I. Morozov, N.A. Lomanova, V.V. Gusarov, Russ. J. Gen. Chem. 73, 1676–1680 (2003)

    Article  Google Scholar 

  9. M. Valant, A.K. Axelsson, N. Alford, Chem. Mater. 19, 5431–5436 (2007)

    Article  Google Scholar 

  10. D.I. Khomskii, Physics 2, 20 (2009)

    Article  Google Scholar 

  11. D.I. Khomskii, J. Magn. Mater. 306, 1–8 (2006)

    Article  ADS  Google Scholar 

  12. T. Covadonga Correas, Hungria, A. Castro, J. Mater. Chem. 21, 3125 (2011)

    Article  Google Scholar 

  13. D. Kan, C.-J. Cheng, V. Nagarajan, I. Takeuchi, J. Appl. Phys. 110, 014106 (2011)

    Article  ADS  Google Scholar 

  14. W.M. Zhu, H.Y. Guo, Z. Ye, Phys. Rev. B 78, 014401 (2008)

    Article  ADS  Google Scholar 

  15. A. Satapathy, E. Sinha, J. Appl. Spectrosc. 84, 6 (2018)

    Article  Google Scholar 

  16. T. Badapanda, S. Sarangi, B. Behera, S. Anwar, T.P. Sinha, AIP Conf. Proc. 1591, 46 (2014)

    Article  ADS  Google Scholar 

  17. T. Sahu, B. Behera, J. Adv. Dielectr. 7, 1750001 (2017)

    Article  ADS  Google Scholar 

  18. E. Gilardi, E. Fabbri, L. Bi, J.L.M. Rupp, T. Lippert, D. Pergolesi, E. Traversa, J. Phys. Chem. C 121(18), 9739–9747 (2017)

    Article  Google Scholar 

  19. S.A. Fedulov, Y.N. Venevtsev, G.S. Zhdanov, G.E. Smazhevskaya, I.S. Rez, Sov. Phys. Crystallogr. 7, 62 (1962)

    Google Scholar 

  20. V.V.S.S. Sai Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10, 1301 (1995)

    Article  ADS  Google Scholar 

  21. T.L. Burnett, T.P. Comyn, A.J. Bell, J. Cryst. Growth 285, 156–161 (2005)

    Article  ADS  Google Scholar 

  22. E. Wu, POWDMULT: An Interactive Powder Diffraction Data Interpretation and Indexing Program, Ver. 2.1, School of Physical Science (Flinders University, Australia, 1989)

    Google Scholar 

  23. A. Siddaramanna, V. Kothai, C. Srivastava, R. Ranjan, J. Phys. D, Appl. Phys. 47, 045004 (2014)

    Article  ADS  Google Scholar 

  24. T. Sahu, B. Behera, J. Adv. Dielect. 7, 1750001 (2017)

    Article  ADS  Google Scholar 

  25. T.P. Comyn, T. Stevenson, M. Al-Jawad, S.L. Turner, R.I. Smith, W.G. Marshall, A.J. Bell, R. Cywinski, Appl. Phys.Lett. 93, 232901 (2008)

    Article  ADS  Google Scholar 

  26. National Bureau of Standards (U.S.) Monogragh 25, 4, 34 (1965)

    Google Scholar 

  27. A. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  ADS  Google Scholar 

  28. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, Chem. Sci. 7, 4548–4556 (2016)

    Article  Google Scholar 

  29. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  30. V.V.S.S. Sai Sunder, A. Halliyal, A.M. Umarji, J. Mater. Res. 10, 1301–1306 (1995)

    Article  ADS  Google Scholar 

  31. B. Behera, P. Nayak, R.N.P. Choudhary, Cent. Eur. J. Phys. 6, 289–295 (2008)

    Google Scholar 

  32. V. Purohit, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)

    Article  Google Scholar 

  33. M.J. Barmi, M. Minakshi, ChemPlusChem, 81, 1–15 (2016)

    Article  Google Scholar 

  34. M.L. Verma, M. Minakshi, N.K. Singh, Electrochim. Acta 137, 497–503 (2014)

    Article  Google Scholar 

  35. N.K. Mohanty, R.N. Pradhan, S.K. Satpathy, A.K. Behera, B. Behera, P. Nayak, J. Mater. Sci. Mater. Electron. 25, 117–123 (2014)

    Article  Google Scholar 

  36. A.K. Jonscher, Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  37. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, RSC Adv. 7, 16319 (2017)

    Article  Google Scholar 

  38. R.K. Panda, R. Muduli, S.K. Kar, D. Behera, J. Alloy. Compd. 615, 899–905 (2014)

    Article  Google Scholar 

  39. S. Nath, S.K. Barik, S. Hajra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 12251–12257 (2018)

    Article  Google Scholar 

  40. S.K. Satpathy, N.K. Mohanty, A.K. Behera, B. Behera, P. Nayak, Electrical conductivity of Gd doped BiFeO3–PbZrO3 composite. Front. Mater. Sci. 7(3), 295–301 (2013)

    Article  Google Scholar 

  41. E. Mostafavi, A. Ataie, M. Ahmadzadeh, M. Palizdar, T.P. Comyn, A.J. Bell, Mater. Chem. Phys. 162, 106–112 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

KA acknowledges the financial support through DST-Fast Track project scheme for Young Scientist (Project no.: SR/FTP/PS-036/2011), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Auromun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auromun, K., Hajra, S., Choudhary, R.N.P. et al. Structural and electrical properties of 0.7(BiSmxFe1−xO3)–0.3(PbTiO3) composites. Appl. Phys. A 125, 49 (2019). https://doi.org/10.1007/s00339-018-2342-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2342-6

Navigation