Skip to main content
Log in

Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Coherently, embedded metal nanostructures (endotaxial) are known to have potential applications concerning the areas of plasmonics, optoelectronics and thermoelectronics. Incorporating appropriate concentrations of metal atoms into crystalline silicon is critical for these applications. Therefore, choosing proper dose of low-energy ions, instead of depositing thin film as a source of metal atoms, helps in avoiding surplus concentration of metal atoms that diffuses into the silicon crystal. In this work, 30 keV silver negative ions are implanted into a SiO x /Si(100) at two different fluences: 1 × 1015 and 2.5 × 1015 Ag ions/cm2. Later, the samples are annealed at 700 °C for 1 h in Ar atmosphere. Embedded silver nanostructures have been characterized using planar and cross-sectional TEM (XTEM) analysis. Planar TEM analysis shows the formation of mostly rectangular silver nanostructures following the fourfold symmetry of the substrate. XTEM analysis confirms the formation of prism-shaped silver nanostructures embedded inside crystalline silicon. Endotaxial nature of the embedded crystals has been discussed using selected area electron diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.T. Sheldon, J. van de Groep, A.M. Brown, A. Polman, H.A. Atwater, Science 346, 828 (2014)

    Article  ADS  Google Scholar 

  2. P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Plasmonics 2, 107 (2007)

    Article  Google Scholar 

  3. S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L.V. Mercaldo, F. Simone, C. Spinella, A. Terrasi, Appl. Phys. Lett. 101, 011911 (2012)

    Article  ADS  Google Scholar 

  4. A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B. 108, 6961 (2004)

    Article  Google Scholar 

  5. E. Stratakis, E. Kymakis, Mater. Today 16, 133 (2013)

    Article  Google Scholar 

  6. P. Migowski, J. Dupont, Chem. Eur. J. 13, 32 (2007)

    Article  Google Scholar 

  7. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Nat. Chem. 3, 160 (2011)

    Article  Google Scholar 

  8. C.J. Vineis, A. Shakouri, A. Majumdar, M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010)

    Article  Google Scholar 

  9. G.F.S. Andrade, M. Fan, A.G. Brolo, Biosens. Bioelectron. 25, 2270 (2010)

    Article  Google Scholar 

  10. R.R. Juluri, A. Ghosh, A. Bhukta, R. Sathyavathi, P.V. Satyam, Thin Solid Films 586, 88 (2015)

    Article  ADS  Google Scholar 

  11. J. Beermann, S.M. Novikov, K. Leosson, S.I. Bozhevolnyi, Opt. Express 17, 12698 (2009)

    Article  ADS  Google Scholar 

  12. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, J. Phys. Condens. Matter. 14, R597 (2002)

    Article  ADS  Google Scholar 

  13. H. Ko, S. Singamaneni, V.V. Tsukruk, Small 4, 1576 (2008)

    Article  Google Scholar 

  14. V. Kuryliuk, A. Nadtochiy, O. Korotchenkov, C.C. Wang, P.W. Li, Phys. Chem. Chem. Phys. 17, 13429 (2015)

    Article  Google Scholar 

  15. R.R. Juluri, A. Rath, A. Ghosh, A. Bhukta, R. Sathyavathi, D.N. Rao, K. Müller, M. Schowalter, K. Frank, T. Grieb, F. Krause, A. Rosenauer, P.V. Satyam, Sci. Rep. 4, 4633 (2014)

    Article  ADS  Google Scholar 

  16. R.R. Juluri, A. Rath, A. Ghosh, P.V. Satyam, J. Phys. Chem. C 117, 13247 (2013)

    Article  Google Scholar 

  17. P. Guha, R.R. Juluri, P.V. Satyam, Nucl. Instrum. Methods Phys. Res. Sect. B 409, 209 (2017)

    Article  ADS  Google Scholar 

  18. S. Mantl, Mater. Sci. Rep. 8, 1 (1992)

    Article  Google Scholar 

  19. G. Medeiros-Ribeiro, A.M. Bratkovski, T.I. Kamins, D.A.A. Ohlberg, R.S. Williams, Science 279, 353 (1998)

    Article  ADS  Google Scholar 

  20. J.F. Ziegler, J.P. Biersack, U. Littmark, (Pergamon Press, New York, 1996)

  21. D.B. Williams, C.B. Carter, Transmission Electron Microscopy: A Textbook for Materials Science (Springer, New York, 1996)

    Book  Google Scholar 

  22. I. Bonev, Acta Cryst. A 28, 508 (1972)

    Article  Google Scholar 

  23. Y. Chen, J. Washburn, Phys. Rev. Lett. 77, 4046 (1996)

    Article  ADS  Google Scholar 

  24. J. Tersoff, F.K. Legoues, Phys. Rev. Lett. 72, 3570 (1994)

    Article  ADS  Google Scholar 

  25. L. Chen, Y. Zeng, P. Nyugen, T.L. Alford, Mater. Chem. Phys. 76, 224 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC-DAE CSR, KC Collaborative Research Project (UGC-DAE-CSR-KC/CRS/15/IOP/MS/01/0669/0670/0755). P. V. Satyam would like to thank 12th plan DAE project at Institute of Physics, Bhubaneswar. We thank staff at Ion Beam Laboratory, Institute of Physics, Bhubaneswar, for helping in low-energy implantation experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umananda M. Bhatta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarajappa, K., Guha, P., Thirumurugan, A. et al. Low-energy ion beam synthesis of Ag endotaxial nanostructures in silicon. Appl. Phys. A 124, 402 (2018). https://doi.org/10.1007/s00339-018-1815-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1815-y

Navigation