Skip to main content
Log in

Investigation of novel zinc molybdate–graphene nanocomposite for supercapacitor applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Novel zinc molybdate–graphene nanocomposite is prepared for the first time in a fast, facile and eco-friendly microwave synthesis route as an electrode material for electrochemical supercapacitors. The as-prepared sample is investigated by X-ray diffraction, FTIR, Raman, scanning electron microscope and transmission electron microscope techniques. The studies have confirmed the formation of ZnMoO4 and its composite with graphene. The synthesized materials are subjected to electrochemical characterization studies in 2M KOH electrolyte solution which prove that ZnMoO4-graphene as an effective electrode material for supercapacitor applications. ZnMoO4 in its composite behavior has exhibited a specific capacitance of 272.93 F g− 1 at 0.5 A g− 1 with good cyclic stability for 1000 cycles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Chen, B. Yao, Ch Li, G. Shi, Carbon 64, 225 (2013). https://doi.org/10.1016/j.carbon.2013.07.055

    Article  Google Scholar 

  2. Q. Ke, J. Wang, J Materiomics 2, 37 (2016). https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  3. M. Khan, A.H. Al-Marri, M. Khan, M. Rafi Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A. Al-Warthan, W. Tremel, M. Nawaz Tahir, M.R.H. Siddiqui, Nanoscale Res. Lett. 10, 281 (2015). https://doi.org/10.1186/s11671-015-0987-z

    Article  ADS  Google Scholar 

  4. Y. Huang, J. Liang, Y. Chen, Small 8, (2012) https://doi.org/10.1002/smll.201102635 1805

    Article  Google Scholar 

  5. T. Kuila, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Nanoscale 5, 52 (2013). https://doi.org/10.1039/C2NR32703A

    Article  ADS  Google Scholar 

  6. D. Chen, L. Tang, J. Li, Chem. Soc. Rev. 39, 3157 (2010). https://doi.org/10.1039/B923596E

    Article  Google Scholar 

  7. Y. Wang, Z. Shi, Y. Huang, Y. Ma, Ch Wang, M. Chen, Y. Chen, J. Phy. Chem. C 113, 13103 (2009). https://doi.org/10.1021/jp902214f

    Article  Google Scholar 

  8. C.H. Yuan, H.B. Wu, Y. Xie, X.W. (David) Lou, Angew. Chem. Int. Ed. 53, 1488 (2014). https://doi.org/10.1002/anie.201303971

    Article  Google Scholar 

  9. L.L. Zhang, R. Zhou, X.S. Zhao, J. Mater. Chem. 20, 5983 (2010). https://doi.org/10.1039/C000417K

    Article  Google Scholar 

  10. Y. Huang, J. Liang, Y. Chen, Small. (2012) https://doi.org/10.1002/smll.201102635 1805

  11. A.W. Anwar, A. Majeed, N. Iqbal, W. Ullah, A. Shuaib, U. Ilyas, F. Bibi, H.M. Rafique, J. Mater. Sci. Technol. 31, 699 (2015). https://doi.org/10.1016/j.jmst.2014.12.012

    Article  Google Scholar 

  12. N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Chem. Rev. 115, 10307 (2015). https://doi.org/10.1021/acs.chemrev.5b00267

    Article  Google Scholar 

  13. M.-Q. Yang, Ch Han, N. Zhang, Y.-J. Xu, Nanoscale 7, 18062 (2015). https://doi.org/10.1039/C5NR05143F

    Article  ADS  Google Scholar 

  14. Ch Han, N. Zhang, Y.-J. Xu, Nano Today 11, 351 (2016). https://doi.org/10.1016/j.nantod.2016.05.008

    Article  Google Scholar 

  15. Q. Quan, X. Lin, N. Zhang, Y.-J. Xu, Nanoscale 9, 2398 (2017). https://doi.org/10.1039/C6NR09439B

    Article  Google Scholar 

  16. Q. Li, Ch Lu, Ch Chen, L. Xie, Y. Liu, Y. Li, Q. Kong, H. Wang, Energy Storage Mater. 8, 59 (2017). https://doi.org/10.1016/j.ensm.2017.04.002

    Article  Google Scholar 

  17. P. Liu, H. Chen, X. Chang, Y. Xue, J. Zhou, Z. Zhao, H. Lin, S. Han, Electrochim. Acta 231, 565 (2017). https://doi.org/10.1016/j.electacta.2017.02.088

    Article  Google Scholar 

  18. Z. Wang, X. Zhang, Y. Li, Z. Liu, Z. Hao, J. Mater. Chem. A 1, 6393 (2013). https://doi.org/10.1039/c3ta10433h

    Article  Google Scholar 

  19. T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sukha, P. Sirisinudomkit, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul, M. Sawangphruk, ACS Appl. Mater. Interfaces 8, 34045 (2016). https://doi.org/10.1021/acsami.6b09440

    Article  Google Scholar 

  20. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013). https://doi.org/10.1021/cr3001884

    Article  Google Scholar 

  21. Z. Ju, E. Zhang, Y. Zhao, Z. Xing, Q. Zhuang, Y. Qiang, Y. Qian, Small 11, 4753 (2015) https://doi.org/10.1002/smll.201501294

    Article  Google Scholar 

  22. B. Das, M.V. Reddy, C. Krishnamoorthi, S. Tripathy, R. Mahendran, G.V. Subba Rao, B.V.R. Chowdari, Electrochim. Acta 54, 3360 (2009). https://doi.org/10.1016/j.electacta.2008.12.049

    Article  Google Scholar 

  23. J. Haetge, C. Suchomski, T. Brezesinski, Small 9, 2541 (2013). https://doi.org/10.1002/smll.201202585

    Article  Google Scholar 

  24. Y. Li, J. Jian, L. Xiao, H. Wang, L. Yu, G. Cheng, J. Zhou, M. Sun, Mater. Lett. 184, 21 (2016). https://doi.org/10.1016/j.matlet.2016.08.012

    Article  Google Scholar 

  25. X. Liu, K. Zhang, B. Yang, W. Song, Q. Liu, F. Jia, S. Qin, W. Chen, Z. Zhang, J. Li, Mater. Lett. 164, 401 (2016). https://doi.org/10.1016/j.matlet.2015.11.051

    Article  Google Scholar 

  26. D.T. Dam, T. Huang, J.-M. Lee, Sustainable Energy Fuels 1,, 324 (2017). https://doi.org/10.1039/c6se00025h

    Article  Google Scholar 

  27. X. Xia, W. Lei, Q. Hao, W. Wang, X. Wang, Electrochim. Acta 99, 253 (2013). https://doi.org/10.1016/j.electacta.2013.03.131

    Article  Google Scholar 

  28. X. Xu, J. Shen, N. Li, M. Ye, J. Alloys Compd. 616, 58 (2014). https://doi.org/10.1016/j.jallcom.2014.07.047

    Article  Google Scholar 

  29. D. Ghosh, S. Giri, Md Moniruzzaman, T. Basu, M. Mandal, Ch..K. Das, Dalton Trans. 43, 11067 (2014). https://doi.org/10.1039/C4DT00672K

    Article  Google Scholar 

  30. R. Xue, W. Hong, Z. Pan, W. Jin, H. Zhao, Y. Song, J. Zhou, Y. Liu, Electrochim. Acta 222, 838 (2016). https://doi.org/10.1016/j.electacta.2016.11.045

    Article  Google Scholar 

  31. L. Wan, J. Shen, Y. Zhang, X. Li, J. Alloys Compd. 708, 713 (2017). https://doi.org/10.1016/j.jallcom.2017.03.078

    Article  Google Scholar 

  32. Y. Ren, L. Gao, J. Am. Ceram. Soc. 93, 3560 (2010). https://doi.org/10.1111/j.15512916.2010.04090.x

    Article  Google Scholar 

  33. S.K. Meher, G. Ranga Rao, J. Phys. Chem. C 115, 25543 (2011). https://doi.org/10.1021/jp209165v

    Article  Google Scholar 

  34. S.K. Meher, G. Ranga Rao, J. Power Sources 215, 317 (2012). https://doi.org/10.1016/j.jpowsour.2012.04.104

    Article  ADS  Google Scholar 

  35. M.T.H. Aunkor, I.M. Mahbubul, R. Saidur, H.S.C. Metselaar, RSC Adv. 6, 27807 (2016). https://doi.org/10.1039/C6RA03189G

    Article  Google Scholar 

  36. G. Gao, S. Lu, B. Dong, W. Yan, W. Wang, T. Zhao, C.Y. Lao, K. Xi, R.V. Kumar, S. Ding, J. Mater. Chem. A 4, 10419 (2016). https://doi.org/10.1039/C6TA03226E

    Article  Google Scholar 

  37. L. Aleksandrov, T. Komatsu, R. Iordanova, Y. Dimitriev, Opt. Mater. 33, 839 (2011). https://doi.org/10.1016/j.optmat.2011.01.003

    Article  ADS  Google Scholar 

  38. K. Von, Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Wiley, New York-London, 1963)

    Google Scholar 

  39. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. 46, 1112 (2010). https://doi.org/10.1039/B917705A

    Article  Google Scholar 

  40. I. Srivastava, R.J. Mehta, Z.-Z. Yu, L. Schadler, N. Koratkar, Appl. Phys. Lett. 98, 063102 (2011). https://doi.org/10.1063/1.3552685

    Article  ADS  Google Scholar 

  41. W. Chem, L. Yan, P.R. Bangal, Carbon 48, 1146 (2010). https://doi.org/10.1016/j.carbon.2009.11.037

    Article  Google Scholar 

  42. X. Yang, H. Ding, D. Zhang, X. Yan, Ch Lu, J. Qin, R. Zhang, H. Tang, H. Song, Cryst. Res. Technol. 46, 1195 (2011). https://doi.org/10.1002/crat.201100302

    Article  Google Scholar 

  43. F.D. Hardcastle, I.E. Wachs, J. Raman Spectrosc 21, 683 (1990). https://doi.org/10.1002/jrs.1250211009

    Article  ADS  Google Scholar 

  44. Y. Liang, P. Liu, H.B. Li, G.W. Yang, Cryst. Growth Des. 12, 4487 (2012). https://doi.org/10.1021/cg3006629

    Article  Google Scholar 

  45. G. Kianpour, F. Soofivand, M. Badiei, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci.: Mater. Electron. 27, 10244 (2016). https://doi.org/10.1007/s10854-016-5103-3

    Google Scholar 

  46. M. Ghorbani, H. Abdizadeh, M.R. Golobostanfard, Procedia Mater. Sci. 11, 326 (2015). https://doi.org/10.1016/j.mspro.2015.11.104

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vickraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, B.J., Vickraman, P. & Justin, A.S. Investigation of novel zinc molybdate–graphene nanocomposite for supercapacitor applications. Appl. Phys. A 124, 409 (2018). https://doi.org/10.1007/s00339-018-1793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1793-0

Navigation