Skip to main content
Log in

Molecular dynamics modeling of periodic nanostructuring of metals with a short UV laser pulse under spatial confinement by a water layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The possibility of material surfaces restructuring on the nanoscale due to ultrashort laser pulses has recently found a number of practical applications. It was found experimentally that under spatial confinement due to a liquid layer atop the surface, one can achieve even finer and cleaner structures as compared to that in air or in vacuum. The mechanism of the materials restructuring under the liquid confinement, however, is not clear and its experimental study is limited by the extreme conditions realized during the intense and localized laser energy deposition that takes place on nanometer spatial and picosecond time-scales. In this theoretical work, we suggest a molecular dynamics-based approach that is capable of simulating the processes of periodic nanostructuring with ultrashort UV laser pulse on metals. The theoretical results of the simulations are directly compared with the experimental data on the same spatial and temporal scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids”. Appl. Phys. A 63, 109–115 (1996)

    ADS  Google Scholar 

  2. R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials”. Nat. Photonics 2, 219–225 (2008)

    ADS  Google Scholar 

  3. A.Y. Vorobyev, C. Guo, Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev. 7, 385–407 (2013)

    ADS  Google Scholar 

  4. Y. Nakata, T. Okada, M. Maeda, Nano-sized hollow bump array generated by single femtosecond laser pulse. Jpn. J. Appl. Phys. 42, L1452 (2003)

    ADS  Google Scholar 

  5. Y. Nakata, N. Miyanaga, K. Momoo, T. Hiromoto, Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation. Appl. Surf. Sci 274, 27 (2013)

    ADS  Google Scholar 

  6. A. Kuchmizhak, O. Vitrik, Yu.. Kulchin, D. Storozhenko, A. Mayor, A. Mirochnik, S. Makarov, V. Milichko, S. Kudryashov, V. Zhakhovsky, N. Inogamov, Laser printing of resonant plasmonic nanovoids. Nanoscale 8, 12352 (2016)

    ADS  Google Scholar 

  7. B.A. Remington, G. Bazan, J. Belak, E. Bringa, M. Caturla, J.D. Colvin, M.J. Edwards, S.G. Glendinning, D.S. Ivanov, B. Kad, D.H. Kalantar, M. Kumar, B.F. Lasinski, K.T. Lorenz, J.M. McNaney, D.D. Meyerhofer, M.A. Meyers, S.M. Pollane, D. Rowley, M. Schneider, J.S. Stolken, J.S. Wark, S.V. Weber, W.G. Wolfer, B. Yaakobi, L.V. Zhigilei, Materials science under extreme conditions of pressure and strain rate. Metall. Mater. Trans. A 35, 2587–2607 (2004)

    Google Scholar 

  8. Y. Nakata, N. Miyanaga, K. Momoo, T. Hiromoto, Template free synthesis of free-standing silver nanowhisker and nanocrown superlattice by interfering femtosecond laser irradiation. Jpn. J. Appl. Phys. 53, 096701 (2014)

    ADS  Google Scholar 

  9. Y. Nakata, Y. Matsuba, N. Miyanaga, Sub-micron period metal lattices fabricated by interfering ultraviolet femtosecond laser processing. Appl. Phys. A 122, 532 (2016)

    ADS  Google Scholar 

  10. D.W. Bäuerle, Laser Processing and Chemistry, 4th edn. (Springer, New York, 2011)

    Google Scholar 

  11. B. Rethfeld, D.S. Ivanov, M.E. Garcia, S.I. Anisimov, Modelling ultrafast laser ablation. J. Phys. D 50, 193001 (2017)

    ADS  Google Scholar 

  12. J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237 (2000)

    Google Scholar 

  13. Yu.V. Petrov, K.P. Migdal, N.A. Inogamov, V.V. Zhakhovsky, Two-temperature equation of state for aluminum and gold with electrons excited by an ultrashort laser pulse., App. Phys. B 119, 401 (2015)

    ADS  Google Scholar 

  14. D.S. Ivanov, B.C. Rethfeld, The effect of pulse duration on the character of laser heating: photo-mechanical vs. photo-thermal damage of metal targets. Appl. Surf. Sci. 255, 9724 (2009)

    ADS  Google Scholar 

  15. D.S. Ivanov, V.P. Lipp, A. Blumenstein, V.P. Veiko, E.B. Yakovlev, V.V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Experimental and theoretical investigation of periodic nanostructuring of au with UV laser near the ablation threshold. Phys. Rev. Appl. 4, 064006 (2015)

    ADS  Google Scholar 

  16. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Ultrafast thermal melting of laser-excited solids by homogeneous nucleation. Phys. Rev. B 65, 092103 (2002)

    ADS  Google Scholar 

  17. B. Lin, H.E. Elsayed-Ali, Temperature dependent reflection electron diffraction study of In(1 1 1) and observation of laser-induced transient surface superheating. Surf. Sci. 498, 275 (2002)

    ADS  Google Scholar 

  18. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevich, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der, Linde, Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit. Nature 422, 287 (2003)

    ADS  Google Scholar 

  19. D.S. Ivanov, L.V. Zhigilei, Kinetic limit of heterogeneous melting in metals. Phys. Rev. Lett. 98, 195701 (2007)

    ADS  Google Scholar 

  20. Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, Molecular dynamics simulation of laser melting of nanocrystalline Au. J. Phys. Chem. C 114, 5686 (2010)

    Google Scholar 

  21. D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)

    ADS  Google Scholar 

  22. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses. Zh. Eksp. Teor. Fiz 66, 776 (1974)

    ADS  Google Scholar 

  23. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Photochemical spallation of molecular and metal targets: molecular dynamic study. Appl. Phys. A 79, 1643–1655 (2004)

    ADS  Google Scholar 

  24. L.V. Zhigilei, Z. Lin, D.S. Ivanov, Atomistic modeling of short-pulse laser ablation of metals: connections between melting, spallation, and phase explosion. J. Chem. Phys. 113, 11892 (2009)

    Google Scholar 

  25. D.S. Ivanov, V.P. Lipp, B. Rethfeld, M.E. Garcia, Molecular-dynamics study of the mechanism of short-pulse laser ablation of single-crystal and polycrystalline metallic targets. J. Opt. Technol. 81, 250 (2014)

    Google Scholar 

  26. K. Miyazaki, GodaiMiyaji, Periodic nanostructure formation on silicon irradiated with multiple low-fluence femtosecond laser pulses in water. Phys. Procedia 39, 674 (2012)

    ADS  Google Scholar 

  27. B. Borchers, J. Békési, P. Simon, J. Ihlemann, Submicron surface patterning by laser ablation with short UV pulses using a proximity phase mask setup. J. Appl. Phys. 107, 063106 (2010)

    ADS  Google Scholar 

  28. J.H. Klein-Wiele, P. Simon, Sub-100 nm pattern generation by laser direct writing using a confinement layer. Optics Express 21(7), 9017–9023 (2013)

    ADS  Google Scholar 

  29. H. Nada, An intermolecular potential model for the simulation of ice and water near the melting point: a six-site model of H2O. J. Chem. Phys. 118, 7401 (2003)

    ADS  Google Scholar 

  30. Y. Dou, L.V. Zhigilei, Z. Postawa, N. Winograd, B.J. Garrison, Thickness effects of water overlayer on its explosive evaporation at heated metal surfaces. Nucl. Instrum. Methods B 180, 105–111 (2001)

    ADS  Google Scholar 

  31. C.-Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci 489, 3–17 (2017)

    ADS  Google Scholar 

  32. P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mourou, Machining of submicron holes using a femtosecond laser at 800 nm. Opt. Commun. 114, 106 (1995)

    ADS  Google Scholar 

  33. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Nanotexturing of gold films by femtosecond laser-induced melt dynamics. Appl. Phys. A 81, 325 (2005)

    ADS  Google Scholar 

  34. D. Hwang, S.-G. Ryu, N. Misra, H. Jeon, C.P. Grigoropoulos, Nanoscale laser processing and diagnostics. Appl. Phys. A 96, 289 (2009)

    ADS  Google Scholar 

  35. C. Huber, A. Trügler, U. Hohenester, Y. Prior, W. Kautek, Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation. Phys. Chem. Chem. Phys. 16, 2289 (2014)

    Google Scholar 

  36. J. Ihlemann, J.-H. Klein-Wiele, J. Békési, P. Simon, UV ultrafast laser processing using phase masks. J. Phys. Conf. Ser. 59, 449 (2007)

    ADS  Google Scholar 

  37. J. Bekesi, P. Simon, J. Ihlemann, Deterministic sub-micron 2D grating structures on steel by UV-fs-laser interference patterning. Appl. Phys. A 114, 69 (2014)

    ADS  Google Scholar 

  38. T. Nagy, P. Simon, Single-shot TG FROG for the characterization of ultrashort DUV pulses. Opt. Express 17, 8144 (2009)

    ADS  Google Scholar 

  39. D.S. Ivanov, B.C. Rethfeld, G.M. O’Connor, T.J. Glynn, A.N. Volkov, L.V. Zhigilei, The mechanism of nanobump formation in femtosecond pulse laser nanostructuring of thin metal films. Appl. Phys. A 92, 791 (2008)

    ADS  Google Scholar 

  40. D.S. Ivanov, A.I. Kuznetsov, V.P. Lipp, B. Rethfeld, B.N. Chichkov, M.E. Garcia, W. Schulz, Short laser pulse surface nanostructuring on thin metal films: direct comparison of molecular dynamics modeling and experiment. Appl. Phys. A 111, 675 (2013)

    ADS  Google Scholar 

  41. C. Schäfer, H.M. Urbassek, L.V. Zhigilei, B.J. Garrison, Pressure-transmitting boundary conditions for molecular dynamics simulations. Comp. Mater. Sci 24, 421 (2002)

    Google Scholar 

  42. V.V. Zhakhovskii, N.A. Inogamov, Yu..V. Petrov, S.I. Ashitkov, K. Nishihara, Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Appl. Surf. Sci 255, 9592 (2009)

    ADS  Google Scholar 

  43. W.F. Gale, T.C. Totemeier, Smithell’s Metal Reference Book, 8th edn. (Butterworth-Heinemann, Oxford, 2004)

    Google Scholar 

  44. N.A. Inogamov, V.V. Zhakhovsky, K.P. Migdal, Laser-induced spalling of thin metal film from silica substrate followed by inflation of microbump. Appl. Phys. A 122, 432 (2016)

    ADS  Google Scholar 

  45. H. Nakano, S. Miyauti, N. Butani, T. Shibayanagi, M. Tsukamoto, N. Abe, Femtosecond laser peening of stainless steel. J. Laser Micro/Nanoeng. 4, 35 (2009)

    Google Scholar 

  46. W.H. Duff, L.V. Zhigilei, Computational study of cooling rates and recrystallization kinetics in short pulse laser quenching of metal targets. J. Phys. Conf. Ser. 59, 413–417 (2007)

    ADS  Google Scholar 

  47. M.V. Shugaev, Ch.. Wu, ,O. Armbruster, A. Naghilou, N. Brouwer, D.S. Ivanov, Th.J.-Y. Derrien, N.M. Bulgakova, W. Kautek, B. Rethfeld, L.V. Zhigilei, Fundamentals of ultrafast laser–material interaction, MRS Bull. 41, 960 (2016)

    Google Scholar 

  48. https://www.researchgate.net/project/Development-of-interatomic-EAM-potentials

Download references

Acknowledgements

The presented work is completed under financial support of grants of the German Science Foundation DFG grants IV 122/1-1, IV 122/1-2, IH 17/18-1, RE 1141/14-1, RE 1141/14-2, RE 1141/15, GA 465/15-1, GA 465/18-1 and GA 465/15-2. The MD simulations were performed at Lichtenberg Super Computer Facility TU-Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, D.S., Blumenstein, A., Ihlemann, J. et al. Molecular dynamics modeling of periodic nanostructuring of metals with a short UV laser pulse under spatial confinement by a water layer. Appl. Phys. A 123, 744 (2017). https://doi.org/10.1007/s00339-017-1372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1372-9

Navigation