Skip to main content
Log in

Magnetic property tuning of epitaxial spinel ferrite thin films by strain and composition modulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Epitaxial spinel ferrite CoFe2O4 and NiFe2O4 thin films and bilayers of NiFe2O4 and CoFe2O4 have been grown by pulsed laser deposition on (001)-oriented SrTiO3 and MgO substrates. Both the single layer thin films showed epitaxial growth on MgO substrates with out-of-plane magnetic easy axis, originating from the out-of-plane compressive strain and negative magnetostriction constant. However, films on SrTiO3 substrates exhibited a magnetic easy axis along the in-plane. Magnetic hysteresis loops showed intermediate shape between magnetically hard CoFe2O4 and magnetically soft NiFe2O4 without two-step switching. Interdiffusion between spinel phases was suppressed using a blocking layer of MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Suzuki, Epitaxial spinel ferrite thin films. Annu. Rev. Mater. Res. 31, 265 (2001)

    Article  ADS  Google Scholar 

  2. D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129, 51 (2007)

    Article  Google Scholar 

  3. Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 1: fundamental properties. J. Mater. Sci. Mater. Electron. 20, 789 (2009)

    Article  Google Scholar 

  4. S.E. Shirsath, X. Liu, Y. Yasukawa, S. Li, A. Morisako, Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film. Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  5. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004)

    Article  ADS  Google Scholar 

  6. R. Bozorth, E. Tilden, A. Williams, Anisotropy and magnetostriction of some ferrites. Phys. Rev. 99, 1788 (1955)

    Article  ADS  Google Scholar 

  7. W. Zhang, J. Jian, A. Chen, L. Jiao, F. Khatkhatay, L. Li, F. Chu, Q. Jia, J.L. MacManus-Driscoll, H. Wang, Strain relaxation and enhanced perpendicular magnetic anisotropy in Bi-FeO3:CoFe2O4 vertically aligned nanocomposite thin films. Appl. Phys. Lett. 104, 062402 (2014)

    Article  ADS  Google Scholar 

  8. P.D. Thang, G. Rijnders, D.H.A. Blank, Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition. J. Magn. Magn. Mater. 310, 2621 (2007)

    Article  ADS  Google Scholar 

  9. T. Dhakal, D. Mukherjee, R. Hyde, P. Mukherjee, M.H. Phan, H. Srikanth, S. Witanachchi, Magnetic anisotropy and field switching in cobalt ferrite thin films deposited by pulsed laser ablation. J. Appl. Phys. 107, 053914 (2010)

    Article  ADS  Google Scholar 

  10. U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.-P. Contour, J.-F. Bobo, J. Fontcuberta, A. Fert, NiFe2O4: a versatile spinel material brings new opportunities for spintronics. Adv. Mater. 18, 1733 (2006)

    Article  Google Scholar 

  11. M. Bibes, A. Barthélémy, Oxide spintronics. IEEE Trans. Electron. Dev. 54, 1003 (2007)

    Article  ADS  Google Scholar 

  12. U. Lüders, M. Bibes, K. Bouzehouane, E. Jacquet, J.-P. Contour, S. Fusil, J.-F. Bobo, J. Fontcuberta, A. Barthélémy, A. Fert, Spin filtering through ferrimagnetic NiFe2O4 tunnel barriers. Appl. Phys. Lett. 88, 082505 (2006)

    Article  ADS  Google Scholar 

  13. K.C. Verma, V.P. Singh, M. Ram, J. Shah, R.K. Kotnala, Structural, microstructural and magnetic properties of NiFe2O4, CoFe2O4 and MnFe2O4 nanoferrite thin films. J. Magn. Magn. Mater. 323, 3271 (2011)

    Article  ADS  Google Scholar 

  14. K. Nadeema, H. Krenn, W. Sarwar, M. Mumtaz, Comparison of surface effects in SiO2 coated and uncoated nickel ferrite nanoparticles. Appl. Surf. Sci. 288, 677 (2014)

    Article  ADS  Google Scholar 

  15. A.B. Smith, R.V. Jones, Magnetostriction in nickel ferrite and cobalt-nickel ferrite. J. Appl. Phys. 37, 1001 (1966)

    Article  ADS  Google Scholar 

  16. Y. Wang, Y. Huang, Q. Wang, Preparation and magnetic properties of BaFe12O19/Ni0.8Zn0.2Fe2O4 nanocomposite ferrite. J. Magn. Magn. Mater. 324, 3024 (2012)

    Article  ADS  Google Scholar 

  17. D. Roy, P.S.A. Kumar, Enhancement of (BH)max in a hard-soft-ferrite nanocomposite using exchange spring mechanism. J. Appl. Phys. 106, 073902 (2009)

    Article  ADS  Google Scholar 

  18. E.E. Fullerton, J.S. Jiang, M. Grimsditch, C.H. Sowers, S.D. Bader, Exchange-spring behavior in epitaxial hard/soft magnetic bilayers. Phys. Rev B. 58, 12193 (1998)

    Article  ADS  Google Scholar 

  19. Y. Suzuki, R.B. van Dover, E.M. Gyorgy, J.M. Phillips, R.J. Felder, Exchange coupling in single-crystalline spinel-structure (Mn, Zn)Fe2O4/CoFe2O4 bilayers. Phys. Rev. B. 53, 14016 (1996)

    Article  ADS  Google Scholar 

  20. A.V. Ramos, J.-B. Moussy, M.-J. Guittet, M. Gautier-Soyer, C. Gatel, P. Bayle-Guillemaud, B. Warot-Fonrose, E. Snoeck, Influence of a metallic or oxide top layer in epitaxial magnetic bilayers containing CoFe2O4 (111) tunnel barriers. Phys. Rev. B. 75, 224421 (2007)

    Article  ADS  Google Scholar 

  21. A. Lisfi, C.M. Williams, L.T. Nguyen, J.C. Lodder, A. Coleman, H. Corcoran, A. Johnson, P. Chang, A. Kumar, W. Morgan, Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films. Phys. Rev. B. 76, 054405 (2007)

    Article  ADS  Google Scholar 

  22. R. Comes, M. Gu, M. Khokhlov, J. Lua, S.A. Wolf, Microstructural and domain effects in epitaxial CoFe2O4 films on MgO with perpendicular magnetic anisotropy. J. Magn. Magn. Mater. 324, 524 (2012)

    Article  ADS  Google Scholar 

  23. M. Ning, J. Li, C.K. Ong, S.J. Wang, High perpendicular coercive field of (100)-oriented CoFe2O4 thin films on Si (100) with MgO buffer layer. J. Appl. Phys. 103, 013911 (2008)

    Article  ADS  Google Scholar 

  24. A.V. Ramos, S. Matzen, J.-B. Moussy, F. Ott, M. Viret, Artificial antiphase boundary at the interface of ferrimagnetic spinel bilayers. Phys. Rev B. 79, 014401 (2009)

    Article  ADS  Google Scholar 

  25. C.A. Kleint, M.K. Krause, R. Höhne, T. Walter, H.C. Semmelhack, M. Lorenz, P. Esquinazi, Exchange anisotropy in epitaxial Fe3O4/CoO and Fe3O4/CoxFe3−xO4 bilayers grown by pulsed laser deposition. J. Appl. Phys. 84, 5097 (1998)

    Article  ADS  Google Scholar 

  26. D.H. Kim, N.M. Aimon, X. Sun, C.A. Ross, Compositionally modulated magnetic epitaxial spinel/perovskite nanocomposite thin films. Adv. Funct. Mater. 24, 2334 (2014)

    Article  Google Scholar 

  27. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, A. Ando, Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868 (2004)

    Article  ADS  Google Scholar 

  28. S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H.D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, H. Ohno, A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721 (2010)

    Article  ADS  Google Scholar 

  29. D.H. Kim, X. Sun, T.C. Kim, Y.J. Eun, T. Lee, S.G. Jeong, C.A. Ross, Magnetic phase formation in self-assembled epitaxial BiFeO3–MgO and BiFeO3–MgAl2O4 nanocomposite films grown by combinatorial pulsed laser deposition. ACS Appl. Mater. Interfaces. 8, 2673 (2016)

    Article  Google Scholar 

  30. S. Venzke, R.B. van Dover, J.M. Phillips, E.M. Gyorgy, T. Siegrist, C.-H. Chen, D. Werder, R.M. Fleming, R.J. Felder, E. Coleman, R. Opila, Epitaxial growth and magnetic behavior of NiFe2O4 thin films. J. Mater. Res. 11, 1187 (1996)

    Article  ADS  Google Scholar 

  31. N.-T. Kim-Ngan, A.G. Balogh, J.D. Meyer, J. Brötz, M. Zaja, T. Slezak, J. Korecki, Thermal and irradiation induced interdiffusion in magnetite thin films grown on magnesium oxide (001) substrates. Surf. Sci. 603, 1175 (2009)

    Article  ADS  Google Scholar 

  32. K.A. Shaw, E. Lochner, D.M. Lind, Interdiffusion study of magnesium in magnetite thin films grown on magnesium oxide (001) substrates. J. Appl. Phys. 87, 1727 (2000)

    Article  ADS  Google Scholar 

  33. A. Marcu, T. Yanagida, K. Nagashima, K. Oka, H. Tanaka, T. Kawai, Crucial role of interdiffusion on magnetic properties of in situ formed MgO/Fe3−δO4 heterostructured nanowires. Appl. Phys. Lett. 92, 173119 (2008)

    Article  ADS  Google Scholar 

  34. D.H. Kim, T.C. Kim, S.H. Lee, S.H. Han, K.-S. Han, C.A. Ross, Self-assembled growth of Sr(Ti, Fe)O3–CoFe2O4 magnetic nanocomposite thin films. J. Appl. Phys. 121, 163902 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by 2017 Research Fund of Myongji University and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A01051656).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Hun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, YM., Lee, S.H., Kim, T.C. et al. Magnetic property tuning of epitaxial spinel ferrite thin films by strain and composition modulation. Appl. Phys. A 123, 648 (2017). https://doi.org/10.1007/s00339-017-1259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1259-9

Navigation