Skip to main content
Log in

Structure and magnetic properties of epitaxial LiFe5O8 film with different growth temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Spinel lithium ferrite (LiFe5O8) has attracted a great deal of attention due to its potential applications in isolators, circulators, and phase shifters. In this work, thin films of LiFe5O8 were fabricated on (001) MgO substrates using pulsed laser deposition technology. Thin films with excellent crystallization qualities were acquired by controlling the growth temperature. Interestingly, the results from reciprocal space mappings (RSMs) indicate that the in-plane lattice parameter a and the out-of-plane lattice parameter c were modulated by changing the film growth temperature. Moreover, the magnetism of LiFe5O8 thin films with different temperatures was significantly studied by vibrating sample magnetometer (VSM) and ferromagnetic resonance (FMR) measurements. These findings illustrate that controlling the growth temperature of the films is an effective method to tailor the lattice parameter and to further modify the magnetic properties of epitaxial LiFe5O8 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Boyraz, D. Mazumdar, M. Iliev, V. Marinova, J. Ma, G. Srinivasan, A. Gupta, Structural and magnetic properties of lithium ferrite (LiFe5O8) thin films: Influence of substrate on the octahedral site order. Appl. Phys. Lett. 98, 012507 (2011)

    Article  ADS  Google Scholar 

  2. B. Loukya, D.S. Negi, R. Sahu, N. Pachauri, A. Gupta, R. Datta, Structural characterization of epitaxial LiFe5O8 thin films grown by chemical vapor deposition. J. Alloy. Compd. 668, 187–193 (2016)

    Article  Google Scholar 

  3. V.A.M. Brabers, Progress in spinel ferrite research. Handbook of Magnetic Materials 8 (1995)

  4. E. Wolska, P. Piszora, W. Nowicki, J. Darul, Vibrational spectra of lithium ferrites: infrared spectroscopic studies of Mn-substituted LiFe5O8. Int. J. Inorg. Mater. 3, 503–507 (2001)

    Article  Google Scholar 

  5. V.J. Folen, Influence of ionic order on the magnetocrystalline anisotropy and crystalline field parameters in lithium ferrite monocrystals. J. Appl. Phys. 31, S166–S167 (1960)

    Article  ADS  Google Scholar 

  6. J. Dash, R. Krishnan, N. Venkataramani, S. Prasad, S. Shringi, P. Kishan, N. Kumar, Sputter deposited LiZn ferrite films on fused quartz substrates. J. Magn. Magn. Mater. 152, L1–L4 (1996)

    Article  ADS  Google Scholar 

  7. C. Jiang, C. Yang, F. Wang, C. Zhou, C. Zhang, Z. Zhao, D. Xue, Electric field induced natural resonance and magnetic damping in FeCo/Pb(Mg1/3Nb2/3)O3–PbTiO3 heterostructures. J. Phys. D Appl. Phys. 48, 255002–255006 (2015)

    Article  ADS  Google Scholar 

  8. M. Liu, S. Li, O. Obi, J. Lou, S. Rand, N.X. Sun, Electric field modulation of magnetoresistance in multiferroic heterostructures for ultralow power electronics. Appl. Phys. Lett. 98, 222509-3 (2011)

    ADS  Google Scholar 

  9. M. Weisheit, S. Fahler, A. Marty, Y. Souche, C. Poinsignon, D. Givord, Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007)

    Article  ADS  Google Scholar 

  10. C. Yang, F. Wang, C. Dong, W. Sui, C. Jiang, D. Xue, Electric-field-induced angular dependence of magnetic anisotropy in a FeCo/Pb(Mg1/3Nb2/3)O3–PbTiO3 heterostructure. J. Appl. Phys. 117, 1062–1064 (2015)

    Google Scholar 

  11. C. Ma, M. Liu, G. Collins, H. Wang, S. Bao, X. Xu, E. Enriquez, C. Chen, Y. Lin, M.H. Whangbo, Magnetic and electrical transport properties of LaBaCo2O5. 5+ δ thin films on vicinal (001) SrTiO3 surfaces. ACS Appl. Mater. Inter. 5, 451–455 (2013)

    Article  Google Scholar 

  12. H.S. Kim, L. Bi, D.H. Kim, D.J. Yang, Y.J. Choi, J.W. Lee, J.K. Kang, Y.C. Park, G.F. Dionne, C.A. Ross, Ferromagnetism in single crystal and nanocomposite Sr(Ti, Fe)O3 epitaxial films. J. Mater. Chem 21, 10364–10369 (2011)

    Article  Google Scholar 

  13. G. Fan, X. Xiang, J. Fan, F. Li, Template-assisted fabrication of macroporous NiFe2O4 films with tunable microstructural, magnetic and interfacial properties. J. Mater. Chem. 20, 7378–7385 (2010)

    Article  Google Scholar 

  14. S. Naik, A. Salker, Change in the magnetostructural properties of rare earth doped cobalt ferrites relative to the magnetic anisotropy. J. Mater. Chem. 22, 2740–2750 (2012)

    Article  Google Scholar 

  15. C. Ma, M. Liu, C. Chen, Y. Lin, Y. Li, J. Horwitz, J. Jiang, E. Meletis, Q. Zhang, The origin of local strain in highly epitaxial oxide thin films. Sci. Rep. 3, 3092–3095 (2013)

    Article  ADS  Google Scholar 

  16. C. Cao, L. Shen, S. Chen, K. Yang, G. Lan, P. Li, W. Wang, M. Liu, G. Chai, C. Jiang, Reciprocal-space-resolved piezoelectric control of non-volatile magnetism in epitaxial LiFe5O8 film on Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrate. Appl. Phys. Lett. 114, 112402-5 (2019)

    ADS  Google Scholar 

  17. R. Zhang, M. Liu, L. Lu, S.-B. Mi, H. Wang, Strain-tunable magnetic properties of epitaxial lithium ferrite thin film on MgAl2O4 substrates. J. Mater. Chem. C 3, 5598–5602 (2015)

    Article  Google Scholar 

  18. W. Liu, M. Liu, R. Ma, R. Zhang, W. Zhang, D. Yu, Q. Wang, J. Wang, H. Wang, Mechanical Strain-Tunable Microwave Magnetism in Flexible CuFe2O4 Epitaxial Thin Film for Wearable Sensors. Adv. Funct. Mater. 28, 1705928-7 (2018)

    Google Scholar 

  19. C. Jia, F. Wang, C. Jiang, J. Berakdar, D. Xue, Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics. Sci. Rep. 5, 11111–11116 (2015)

    Article  ADS  Google Scholar 

  20. T.L. Gilbert, A phenomenological theory of damping in ferromagnetic materials. IEEE Tran. Magn. 40, 3443–3449 (2004)

    Article  ADS  Google Scholar 

  21. M. Lakshmanan, K. Nakamura, Landau-Lifshitz equation of ferromagnetism: exact treatment of the gilbert damping. Phys. Rev. Lett. 53, 2497–2499 (1984)

    Article  ADS  Google Scholar 

  22. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Tran. Magn. 27, 3475–3518 (2003)

    Article  ADS  Google Scholar 

  23. K. Lenz, E. Kosubek, K. Baberschke, H. Wende, J. Herfort, H.P. Schönherr, K.H. Ploog, Magnetic properties of Fe3Si/GaAs (001) hybrid structures. Phys. Rev. B 72, 144411–144415 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (No. 51471081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, C., Cao, C. & Zhao, J. Structure and magnetic properties of epitaxial LiFe5O8 film with different growth temperatures. Appl. Phys. A 125, 566 (2019). https://doi.org/10.1007/s00339-019-2850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2850-z

Navigation