Skip to main content

Advertisement

Log in

The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni–P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag–22.0Cu–15.9In–10.86Sn–1.84Ti (wt%) foil. The effects of Ni–P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag–Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased (T/°C = 550–600) or the soaking time was prolonged (t/min = 10–50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni–P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction (~2 μm transition layer) that occurred along the Ni–P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni–P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Wu, Q. Zhang, L. Jiang, G. Chen, Z. Xiu, Electron. Compon. Mater. 22, 27–29 (2003). (in Chinese)

    Google Scholar 

  2. D.K. Das, S. Sahoo, J. Sci. Technol. 4, 708–709 (2014)

    Google Scholar 

  3. M. Guo, J. Liu, Y. Li, Trans. Nonferr. Met. Soc. 24, 1039–1045 (2014)

    Article  Google Scholar 

  4. R. Purohit, R.S. Rana, C.S. Verma, Int. J. Eng. Res. Appl. 2, 420–437 (2014)

    Google Scholar 

  5. Q. Zhang, G. Wu, G. Chen, L. Jiang, B. Luan, Compos. Part A Appl. Sci. 34, 1023–1027 (2003)

    Article  Google Scholar 

  6. Y. Cui, S.M. Gan, F.B. Liu, B.S. Wu, Y. Yang, Mater. Res. Innov. 19, S9–S116 (2015)

    Article  Google Scholar 

  7. Q. Zhang, X. Ma, G. Wu, Ceram. Int. 39, 4893–4897 (2013)

    Article  Google Scholar 

  8. B.S. Rao, C. Hemambar, A.V. Pathak, K.J. Patel, IEEE Trans. Electron. Packag. 29, 58–63 (2006)

    Article  Google Scholar 

  9. Q.J. Jia, J.Y. Liu, L.I. Yan-Xia, W.S. Wang, Trans. Nonferr. Met. Soc. 23, 80–85 (2013)

    Article  Google Scholar 

  10. M.H. Guo, J.Y. Liu, C.C. Jia, S.J. Guo, Y.X. Li, H.Y. Zhou, J. Univ. Sci. Technol. Beijing 36, 489–495 (2014)

    Google Scholar 

  11. M.A. Occhionero, R.A. Hay, R.W. Adams, K.P. Fennessy, G. Sundberg, Int. Soc. Opt. Eng. 1999, 55–59 (2000)

    Google Scholar 

  12. S.P. Rawal, JOM-US 53, 14–17 (2001)

    Article  Google Scholar 

  13. Y.U. Zhi-Hua, J.Y. Zhang, X.L. Zhou, A.H. Zou, Met. Funct. Mater. 16, 59–64 (2009). (in Chinese)

    Google Scholar 

  14. A. Urena, M.D. Escalera, L. Gil, Compos. Sci. Technol. 60, 613–622 (2000)

    Article  Google Scholar 

  15. Y. Lei, Z. Zhang, J. Nie, X. Chen, Trans. Nonferr. Met. Soc. 18, 809–813 (2008)

    Article  Google Scholar 

  16. S.G. Wang, X.H. Ji, X.Q. Zhao, N.N. Dong, Mater. Sci. Technol. 67, 60–64 (2010)

    Google Scholar 

  17. J. Huang, Y. Dong, Y. Wan, X. Zhao, H. Zhang, J. Mater. Process. Technol. 190, 312–316 (2007)

    Article  Google Scholar 

  18. G. Zhang, B. Chen, M. Jin, J. Zhang, Mater. Trans. 56, 212–217 (2015)

    Article  Google Scholar 

  19. G. Zhang, J. Cai, B. Chen, T. Xu, Mater. Design 110, 653–662 (2016)

    Article  Google Scholar 

  20. J. Lu, Y. Mu, X. Luo, J. Niu, Mater. Sci. Eng. B 177, 1759–1763 (2012)

    Article  Google Scholar 

  21. J. Li, K.H. Wang, Trans. Tech. Publ. 633–634, 760–763 (2014)

    Google Scholar 

  22. P. Wang, D. Xu, J. Niu, Appl. Phys. A 122, 592–602 (2016)

    Article  ADS  Google Scholar 

  23. P. Wang, Z. Gao, J. Niu, Appl. Phys. A 122, 1069–1081 (2016)

    Article  ADS  Google Scholar 

  24. D. Wang, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Mater. Des. 47, 243–247 (2013)

    Article  Google Scholar 

  25. D. Wang, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 589, 271–274 (2014)

    Article  Google Scholar 

  26. D. Wang, B.L. Xiao, D.R. Ni, Z.Y. Ma, Acta Metall. Sin. Engl. 27, 816–824 (2014)

    Article  Google Scholar 

  27. Z. Gao, Z.R. Chen, D.X. Xu, P. Wang, J.T. Niu, X.T. Wang, Eng. Rev. 36, 249–254 (2016). (in Chinese)

    Google Scholar 

  28. X.T. Wang, J.T. Niu, Mater. Mech. Eng. 38, 20–24 (2014)

    Article  Google Scholar 

  29. Z. Gao, Q.Y. Li, Z.L. Zhao, Z.L. Zhao, J.T. Niu, Hot Work. Technol. 44, 189–191 (2015)

    Google Scholar 

  30. C.L. He, J.M. Wang, Q.K. Cai, Adv. Mater. Res. 194–196, 1437–1441 (2011)

    Article  Google Scholar 

  31. X.U. Dongxia, J. Tian, D. Wang, J. Niu, X. Xue, H. Sun, J. Mater. Eng. 44, 60–65 (2016)

    Google Scholar 

  32. L. Li, M. An, G. Wu, L. Li, M. An, G. Wu, Surf. Coat. Technol. 200, 5102–5112 (2006)

    Article  Google Scholar 

  33. H. Wang, L. Liu, W. Jiang, Trans. Nonferr. Met. Soc. 24, 3014–3022 (2014)

    Article  Google Scholar 

  34. T.H. Hentschel, D. Isheim, R. Kirchheim, F. Müller, H. Kreye, Acta Mater. 48, 933–941 (2000)

    Article  Google Scholar 

  35. J. Pstruś, T. Gancarz, J. Mater. Eng. Perform. 23, 1614–1624 (2014)

    Article  Google Scholar 

  36. X.T. Wang, Research on brazing technique between aluminum matrix composites with high volume fraction and kovar alloy [D], Henan Polytechnic University, (2013). (in Chinese)

  37. W.P. Gan, H. Chen, F.L. Yang, Mater. Rev. 21, 156–158 (2007)

    Google Scholar 

  38. K.J. Laidler, The development of the Arrhenius equation. J. Chem. Educ. 61, 494–498 (1984)

    Article  Google Scholar 

  39. H.Ф. Лaшкo, C.B. Лaшкo, Кoнтaктьe Meтaллy Pгичecкиe Пpoцeccы пpп Пaйкe И Пaпйaкe Meтaллoв, Meтaллypтия, (1977)

Download references

Acknowledgements

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Project 51245008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Xu, D., Zhai, Y. et al. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil. Appl. Phys. A 123, 569 (2017). https://doi.org/10.1007/s00339-017-1177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1177-x

Navigation