Skip to main content
Log in

Noticeable red emission and Raman active modes in nanoscale gadolinium oxyfluoride (Gd4O3F6) systems with Eu3+ inclusion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Eu3+ doped gadolinium oxyfluoride (Gd4O3F6, GOF) nanoscale systems have been synthesized following a modified Pechini method. While exhibiting a tetragonal crystal structure, the GOF nanosystem gave an average crystallite size (d) of ~21–26 nm. The Lotgering factor (L F), which is a measure of orientation of crystallites along the preferred direction was found to vary between 0.22 and 0.48. In the photoluminescence spectra, ~595 and ~613 nm peaks were identified as magnetically driven (5 D 0 → 7 F 1) and electrically driven (5 D 0 → 7 F 2) transitions with latter (red emission) being strongly manifested with Eu3+ doping concentration and intrinsic defects. Moreover, several Raman active modes have been probed in the Raman spectra with low frequency peaks (<300 cm−1) and moderate frequency peaks (~481 and 567  cm−1) assigned to observable vibration of heavy atom Gd–Gd pairs and Gd–O groups, respectively. Apart from manifestation of phononic features, inclusion of Eu3+ in the host lattice would bring new insight on improving the red emission response prior to concentration quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Hosono, S. Fujihara, T. Kimura, Langmuir 20, 3769 (2004)

    Article  Google Scholar 

  2. M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, S. Fujihara, S. Koji, Appl. Surf. Sci. 222, 125 (2004)

    Article  ADS  Google Scholar 

  3. M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, S. Fujihara, S. Koji, J. Fluorine Chem. 125, 1119 (2004)

    Article  Google Scholar 

  4. F. Vetrone, R. Naccache, A. Juarranz de la Fuente, F. Sanz-Rodríguez, A. Blazquez-Castro, E. Martin Rodriguez, D. Jaque, J. García Solé, J.A. Capobianco, Nanoscale 2, 495 (2010)

  5. R. Kumar, M. Nyk, T.Y. Ohulchanskyy, C.A. Flask, P.N. Prasad, Adv. Funct. Mater. 19, 853 (2009)

    Article  Google Scholar 

  6. J. Hölsä, B. Piriou, M. Räsänen, Spectrochim. Acta 49A, 465 (1993)

    Article  ADS  Google Scholar 

  7. F. Cornacchia, A. Di Lieto, M. Tonelli, Appl. Phys. B 96, 363 (2009)

    Article  ADS  Google Scholar 

  8. J. Hölsä, E. Kestilä, J. Alloys Compd. 225, 89 (1995)

    Article  Google Scholar 

  9. E. Antic-Fidancev, J. Hölsä, J.C. Krupa, M. Lastusaari, J. Alloys Compd. 380, 303 (2004)

    Article  Google Scholar 

  10. L. Armelao, G. Bottaro, G. Bruno, M. Losurdo, M. Pascolini, E. Soini, E. Tondello, J. Phys. Chem. C 112, 14508 (2008)

    Article  Google Scholar 

  11. S. Fujihara, S. Koji, T. Kimura, J. Mater. Chem. 14, 1331 (2004)

    Article  Google Scholar 

  12. A. Antuzevics, M. Kemere, R. Ignatans, J. Noncryst, Solids 449, 29 (2016)

    Google Scholar 

  13. T. Passuello, F. Piccinelli, M. Pedroni, M. Bettinelli, F. Mangiarini, R. Naccache, F. Vetrone, J.A. Capobianco, A. Speghini, Opt. Mater. 33, 643 (2011)

    Article  ADS  Google Scholar 

  14. T. Grzyb, R.J. Wiglusz, V. Nagirnyi, A. Kotlov, S. Lis, Dalton Trans. 43, 6925 (2014)

    Article  Google Scholar 

  15. J. Hölsä, Acta Chem. Scand. 45, 583 (1991)

    Article  Google Scholar 

  16. Y. Zhang, X. Kang, D. Geng, M. Shang, Y. Wu, X. Li, H. Lian, Z. Cheng, J. Lin, Dalton Trans. 42, 14140 (2013)

    Article  Google Scholar 

  17. R. Li, Y. Liu, N. Zhang, L. Li, L. Liu, Y. Liang, S. Gan, J. Mater. Chem. C 3, 3928 (2015)

    Article  Google Scholar 

  18. P.S. Archana, A. Gupta, M.M. Yusoff, R. Jose, Appl. Phys. Lett. 105, 153901 (2014)

    Article  ADS  Google Scholar 

  19. F.K. Lotgering, J. Inorg. Nucl. Chem. 9, 113 (1959)

    Article  Google Scholar 

  20. R.S. Ningthoujam, R. Shukla, R.K. Vatsa, V. Duppel, L. Kienle, A.K. Tyagi, J. Appl. Phys. 105, 084304 (2009)

    Article  ADS  Google Scholar 

  21. A.T.M. A. Rahman, K. Vasilev, P. Majewski, J. Coll. Interf. Sci. 354, 592 (2011)

    Article  Google Scholar 

  22. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, S.C. Sharma, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, Spectrochim. Acta Mol. Biomol. Spectrosc. 96, 532 (2012)

    Article  ADS  Google Scholar 

  23. L. Liu, X. Chen, Nanotechnology 18, 255704 (2007)

  24. P. Du, L. Song, J. Xiong, Z. Xi, D. Jin, L. Wang, Nanotechnology 22, 035602 (2011)

    Article  ADS  Google Scholar 

  25. J. Hölsä, E. Säilynoja, H. Rahiala, J. Valkonen, Polyhedron 16, 3421 (1997)

    Article  Google Scholar 

  26. H.C. Choi, Y.M. Jung, S.B. Kim, Vib. Spectr. 37, 33 (2005)

    Article  Google Scholar 

  27. S. Sahoo, A.K. Arora, V. Sridharan, J. Phys. Chem. C 113, 16927 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank SAIC, TU for extending TEM facility and colleagues for valuable suggestions. One of the author (SH) acknowledges Ms. P. Chetry for her assistance during synthesis work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dambarudhar Mohanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazarika, S., Mohanta, D. Noticeable red emission and Raman active modes in nanoscale gadolinium oxyfluoride (Gd4O3F6) systems with Eu3+ inclusion. Appl. Phys. A 123, 382 (2017). https://doi.org/10.1007/s00339-017-0987-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0987-1

Keywords

Navigation