Skip to main content
Log in

White-light upconversion emission of lanthanide double-doped oxide nanoparticles via defect state luminescence of ZnO

实现基于缺陷能级稀土双掺氧化锌上转换发光

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The white upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) is mainly made up of the color red, green and blue. Interestingly, the white-light-emitting UCNPs can be obtained via a complex method of tridoping lanthanide ions such as Yb3+, Er3+, and Tm3+. We herein report that an excellent white UCL can be obtained from Yb/Tm double-doped ZnO. In this system, the blue and red UCL-emissions around 475 and 652 nm originate from 1G43H6 and 1G43F4 transition of Tm3+, respectively, and the green one can be attributed to the defect states (oxygen vacancies) luminescence (DSL) of the ZnO host. Meanwhile, the fine nanostructure of ZnO:Yb/Tm is prepared by adjusting the concentration of OH. Particularly, the one dimentional pencil-shaped nanorods with high aspect ratio achieve a strong green DSL emission due to the high concentration of oxygen vacancy. The oxygen vacancy defects play an irreplaceable role in affecting the intensities of blue and red UCL by acting as the intermediate state in the energy transfer process. More importantly, we demonstrate that the DSL and UCL can be combined into systems, paving a new road for obtaining the white UCL emission.

摘要

上转换白光由红色、 绿色和蓝色组成, 而上转换白光通常是通过复杂的三掺杂稀土离子如Yb3+、 Er3+和Tm3+实现的. 本文报道了一个新型村料, 通过Yb3+、 Tm3+双掺ZnO实现上转换白光输出. 体系获得475nm(1G43H6)上转换蓝光和652 nm (1G43F4)上转换红光, 上转 换绿光发射源于ZnO基质村料缺陷(氧空位)发光. 此外, 通过调节OH的浓度可以调控纳米村料形貌. 尤其是铅笔状结构纳米棒由于表面具有高浓度的氧空位, 实现了 上转换绿光辐射. 同时氧空位缺陷作为能量传递过程的中间态能级, 提高了上转换蓝光以及上转换红光的发 光强度.我们的研究首次将缺陷发光机理和上转换发光机理相结合, 为实现上转换白光输出开辟了新道路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Y, Tu D, Zhu H, et al. Lanthanide-doped luminescent nanobioprobes: from fundamentals to biodetection. Nanoscale, 2013, 5: 1369–1384

    Article  Google Scholar 

  2. Wilhelm S, Kaiser M, Würth C, et al. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7: 1403–1410

    Article  Google Scholar 

  3. Wang M, Abbineni G, Clevenger A, et al. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed-Nanotech Biol Med, 2011, 7: 710–729

    Article  Google Scholar 

  4. Wang L, Yan R, Huo Z, et al. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed, 2005, 44: 6054–6057

    Article  Google Scholar 

  5. Chen Z, Chen H, Hu H, et al. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc, 2008, 130: 3023–3029

    Article  Google Scholar 

  6. Cui HH, Valdez JG, Steinkamp JA, et al. Fluorescence lifetimebased discrimination and quantification of cellular DNA and RNA with phase-sensitive flow cytometry. Cytometry, 2003, 52A: 46–55

    Article  Google Scholar 

  7. Steemers FJ, Ferguson JA, Walt DR. Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotechnol, 2000, 18: 91–94

    Article  Google Scholar 

  8. Han M, Gao X, Su JZ, et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631–635

    Article  Google Scholar 

  9. Creran B, Yan B, Moyano DF, et al. Laser desorption ionization mass spectrometric imaging of mass barcoded gold nanoparticles for security applications. Chem Commun, 2012, 48: 4543–4545

    Article  Google Scholar 

  10. Zhang F, Haushalter RC, Haushalter RW, et al. Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small, 2011, 7: 1972–1976

    Article  Google Scholar 

  11. Cen Y, Wu YM, Kong XJ, et al. Phospholipid-modified upconversion nanoprobe for ratiometric fluorescence detection and imaging of phospholipase d in cell lysate and in living cells. Anal Chem, 2014, 86: 7119–7127

    Article  Google Scholar 

  12. Liu J, Cheng J, Zhang Y. Upconversion nanoparticle based LRET system for sensitive detection of MRSA DNA sequence. Biosens Bioelectron, 2013, 43: 252–256

    Article  Google Scholar 

  13. Zhang Y, Tang Y, Liu X, et al. A highly sensitive upconverting phosphors-based off-on probe for the detection of glutathione. Sensors Actuators B-Chem, 2013, 185: 363–369

    Article  Google Scholar 

  14. Yu M, Lin J, Wang Z, et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A (A=Eu3+, Dy3+, Sm3+, Er3+ ) phosphor films via sol-gel soft lithography. Chem Mater, 2002, 14: 2224–2231

    Article  Google Scholar 

  15. Zhang F, Braun GB, Shi Y, et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: tuning of the upconversion fluorescence with silver nanoparticles. J Am Chem Soc, 2010, 132: 2850–2851

    Article  Google Scholar 

  16. Zhang F, Wan Y, Yu T, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew Chem Int Ed, 2007, 46: 7976–7979

    Article  Google Scholar 

  17. Liu Y, Tu D, Zhu H, et al. Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev, 2013, 42: 6924

    Article  Google Scholar 

  18. Gorris HH, Wolfbeis OS. Photonen aufkonvertierende nanopartikel zur optischen codierung und zum multiplexing von zellen, biomolekülen und mikrosphären. Angew Chem, 2013, 125: 3668–3686

    Article  Google Scholar 

  19. Shan J, Kong W, Wei R, et al. An investigation of the thermal sensitivity and stability of the β-NaYF4:Yb,Er upconversion nanophosphors. J Appl Phys, 2010, 107: 054901–054901

    Article  Google Scholar 

  20. Yu W, Xu W, Song H, et al. Temperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase. Dalton Trans, 2014, 43: 6139–6147

    Article  Google Scholar 

  21. Li Z, Wang L, Wang Z, et al. Modification of NaYF4:Yb,Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J Phys Chem C, 2011, 115: 3291–3296

    Article  Google Scholar 

  22. Zhao J, Lu Z, Yin Y, et al. Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size. Nanoscale, 2013, 5: 944–952

    Article  Google Scholar 

  23. Lu Y, Lu J, Zhao J, et al. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays. Nat Commun, 2014, 5: 3741

    Google Scholar 

  24. Mahalingam V, Naccache R, Vetrone F, et al. Preferential suppression of high-energy upconverted emissions of Tm3+ by Dy3+ ions in Tm3+/Dy3+/Yb3+-doped LiYF4 colloidal nanocrystals. Chem Commun, 2011, 47: 3481–3483

    Article  Google Scholar 

  25. Yang X, Li Q, Liu Z, et al. Pressure-induced amorphization in Gd2O3/Er3+ nanorods. J Phys Chem C, 2013, 117: 8503–8508

    Article  Google Scholar 

  26. Wang X, Kong X, Yu Y, et al. Effect of annealing on upconversion luminescence of ZnO:Er3+ nanocrystals and high thermal sensitivity. J Phys Chem C, 2007, 111: 15119–15124

    Article  Google Scholar 

  27. Luo W, Liu Y, Chen X. Lanthanide-doped semiconductor nanocrystals: electronic structures and optical properties. Sci China Mater, 2015, 58: 819–850

    Article  Google Scholar 

  28. Liu L, Chen X. Energy levels, fluorescence lifetime and Judd-Ofelt parameters of Eu3+ in Gd2O3 nanocrystals. Nanotechnology, 2007, 18: 255704

    Article  Google Scholar 

  29. Fan F, Feng Y, Tang P, et al. Synthesis and gas sensing performance of dandelion-like ZnO with hierarchical porous structure. Ind Eng Chem Res, 2014, 53: 12737–12743

    Article  Google Scholar 

  30. Li Y, Wang R, Xu Y, et al. Structural characterizations and upconversion emission in Yb3+/Tm3+co-doped ZnO nanocrystals by tri-doping with Ga3+ ions. RSC Adv, 2016, 6: 111052–111059

    Article  Google Scholar 

  31. Liu Y, Luo W, Li R, et al. Near-infrared luminescence of Nd3+ and Tm3+ ions doped ZnO nanocrystals. Opt Express, 2009, 17: 9748–9753

    Article  Google Scholar 

  32. Zeng X, Yuan J, Wang Z, et al. Nanosheet-based microspheres of Eu3+-doped ZnO with efficient energy transfer from ZnO to Eu3+ at room temperature. Adv Mater, 2007, 19: 4510–4514

    Article  Google Scholar 

  33. Frindell KL, Bartl MH, Popitsch A, et al. Sensitized luminescence of trivalent europium by three-dimensionally arranged anatase nanocrystals in mesostructured titania thin films. Angew Chem Int Ed, 2002, 41: 959–962

    Article  Google Scholar 

  34. Jayalakshmi G, Saravanan K, Balasubramanian T. Impact of thiol and amine functionalization on photoluminescence properties of ZnO films. J Lumin, 2013, 140: 21–25

    Article  Google Scholar 

  35. Chen D, Wang Y, Zheng K, et al. Bright upconversion white light emission in transparent glass ceramic embedding Tm3+/Er3+/Yb3+: β-YF3 nanocrystals. Appl Phys Lett, 2007, 91: 251903

    Article  Google Scholar 

  36. Li Y, Li Y, Wang R, et al. Enhancing upconversion luminescence by annealing processes and the high-temperature sensing of ZnO: Yb/Tm nanoparticles. New J Chem, 2017, 41: 7116–7122

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (11374080).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang  (王锐).

Additional information

Yuemei Li is a doctor of material chemistry at Harbin Institute of Technology. Her research is focused on the preparation of nanoparticles doped with rare earth ions, and their luminescence properties for application in biological probes and optical thermometry.

Rui Wang is a professor of chemistry. She has authored more than 50 peer review papers on topics of the growth of nanoparticles and single crystals, and the development of luminescent materials. Her current research interests include the application of upconverting luminescent materials in biological probes, and optical thermometry based on upconverting luminescent materials doped with rare earth ions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Y., Wang, R. et al. White-light upconversion emission of lanthanide double-doped oxide nanoparticles via defect state luminescence of ZnO. Sci. China Mater. 60, 1245–1252 (2017). https://doi.org/10.1007/s40843-017-9110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-017-9110-9

Keywords

Navigation