Skip to main content
Log in

Effect of S2− donors on synthesizing and photocatalytic degrading properties of ZnS/RGO nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To synthesize ZnS/RGO nanocomposite via one-step solvothermal method with graphene oxide (GO) aqueous solution as precursor, we selected sodium sulfide and thiourea as S2− donor, respectively, with the aim to evaluate the effect of different S2− sources on the synthesis and degrading properties of the composite. The photocatalytic activity of the nanocomposite was investigated through the photocatalytic degradation of methylene blue in aqueous solution. Results showed that ZnS/RGO nanocomposites were synthesized using both sodium sulfide and thiourea as S2− donor, respectively. Compared to pure ZnS, the nanocomposites exhibited higher photocatalytic activity; furthermore, the nanocomposite prepared with sodium sulfide as the S2− source exhibited much better photocatalytic degradation efficiency than that with thiourea as the S2− source. The surface reaction rate constant of the former was two times higher than that of the latter and was six times higher than that of pure ZnS sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O. Kozak, P. Praus, K. Koci, M. Klementova, J. Colloid Interf. Sci. 352, 244–251 (2010)

    Article  Google Scholar 

  2. D. Xiang, Y. Zhu, Z. He, Z. Liu, J. Luo, Mater. Res. Bull. 48, 188–193 (2012)

    Article  Google Scholar 

  3. G.Z. Shen, Y. Bando, D. Golberg, Appl. Phys. Lett. 88, 1–3 (2006)

    Google Scholar 

  4. T. Hirakawa, P.V. Kamat, J. Am. Chem. Soc. 127, 3928–3934 (2005)

    Article  Google Scholar 

  5. V. Subramanian, E.E. Wolf, P.V. Kamat, J. Am. Chem. Soc. 126, 4943–4950 (2004)

    Article  Google Scholar 

  6. S.H. Elder, F.M. Cot, Y. Su, S.M. Heald, A.M. Tyryshkin, M.K. Bowman, Y. Gao, A.G. Joly, M.L. Balmer, A.C. Kolwaite, K.A. Magrini, D.M. Blake, J. Am. Chem. Soc. 122, 5138–5146 (2000)

    Article  Google Scholar 

  7. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Langmuir 18, 7777–7779 (2002)

    Article  Google Scholar 

  8. A.M. Turek, I.E. Wachs, E. DeCanio, J. Phys. Chem. 96, 5000–5007 (1992)

    Article  Google Scholar 

  9. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  10. Y. Zhang, Y. Tan, H.L. Stormer, P. Kim, Nature 438, 201–204 (2005)

    Article  ADS  Google Scholar 

  11. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Solid State Commun. 146, 351–355 (2008)

    Article  ADS  Google Scholar 

  12. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  13. Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, ACS Nano 6, 9777–9789 (2012)

    Article  Google Scholar 

  14. Y. Feng, N.N. Feng, G.Y. Zhang, G.X. Du, CrystEngComm 16, 214–222 (2014)

    Article  Google Scholar 

  15. C. Xu, X. Wang, J.W. Zhu, J. Phys. Chem. C 112, 19841–19845 (2008)

    Article  Google Scholar 

  16. Y. Lei, F.F. Cheng, R. Li, J. Xu, Appl. Surf. Sci. 308, 206–210 (2014)

    Article  ADS  Google Scholar 

  17. M. Sookhakiana, Y.M. Amina, W.J. Basirunb, Appl. Surf. Sci. 283, 668–677 (2013)

    Article  ADS  Google Scholar 

  18. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126–1130 (1970)

    Article  ADS  Google Scholar 

  19. T.N. Lambert, C.A. Chavez, B. Hernandez-Sanchez, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, J. Phys. Chem. C 113, 19812–19823 (2009)

    Article  Google Scholar 

  20. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  21. Q.H. Liang, Y. Shi, W.J. Ma, Z. Li, X.M. Yang, Phys. Chem. Chem. Phys. 14, 15657–15665 (2012)

    Article  Google Scholar 

  22. Q. Xiang, J. Yu, M. Jaroniec, Nanoscale 3, 3670–3678 (2011)

    Article  ADS  Google Scholar 

  23. Y. Li, X. Li, J. Li, J. Yin, Water Res. 40, 1119–1126 (2006)

    Article  Google Scholar 

  24. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, W. Ahmed, Appl. Surf. Sci. 274, 273–281 (2013)

    Article  ADS  Google Scholar 

  25. X.Q. An, J.C. Yu, RSC Adv. 1, 1426–1434 (2011)

    Article  Google Scholar 

  26. H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, ACS Nano 4, 380–386 (2010)

    Article  Google Scholar 

  27. J.S. Lee, K.H. You, C.B. Pack, Adv. Mater. 24, 1084–1088 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the program of Liaoning Education Department Nos. LG201605, Key Laboratory Open Fund of Shenyang Ligong University Nos. 4801004yb61-d, and the National Basic Research Program of China under Grant Nos. 2011CB932603 and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingrui Ni or Zongyi Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Y., Sun, Z., Zhao, W. et al. Effect of S2− donors on synthesizing and photocatalytic degrading properties of ZnS/RGO nanocomposite. Appl. Phys. A 123, 355 (2017). https://doi.org/10.1007/s00339-017-0972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0972-8

Keywords

Navigation