Skip to main content
Log in

Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical properties of localized surface plasmon resonances (LSPR) of Ag/ITO sliced nanosphere have been studied using discrete dipole approximation and plasmon hybridization theory. It is found that different morphologies of sliced nanosphere can induce distinctive features in the extinction spectra. In the meanwhile, gap distances and refractive index of the surrounding medium could modulate the plasmon hybridization and the LSPR shifting. At large separation, the shift of LSPR peaks for the nanosphere sliced in halves consisting of ITO and Ag is small and insensitive to the gap distance in the weak coupling, whereas smaller separation exhibits a distinct red shift. Additionally, multiple resonance peaks are excited for the nanosphere sliced in quarters consisting of ITO and Ag. In this situation, electric field is mainly distributed in the gap region of sliced nanosphere and the central point. These results indicate that different morphologies of sliced nanosphere could create abundant tunable LSPR modes, which provides potential for multiplex optical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.K. Patela, M.A. Ali, S. Srivastava, V.V. Agrawal, S.G. Ansari, B.D. Malhotra, Biosens. Bioelectron. 50, 406 (2013)

    Article  Google Scholar 

  2. V.L.Y. Loke, G.M. Huda, E.U. Donev, V. Schmidt, J.T. Hastings, M.P. Menguüc, T. Wriedt, Appl. Phys. B 115, 237 (2014)

    Article  ADS  Google Scholar 

  3. H. Duan, Y. Xuan, Phys. E 43, 1475 (2011)

    Article  Google Scholar 

  4. R. Takahata, S. Yamazoe, K. Koyasu, T. Tsukuda, J. Am. Chem. Soc. 136, 8489 (2014)

    Article  Google Scholar 

  5. A.J. Haes, S. Zou, C. George, J. Phys. Chem. B 108, 6961 (2004)

    Article  Google Scholar 

  6. C.R. Yonzon, E. Jeoung, J. Am. Chem. Soc. 126, 12669 (2004)

    Article  Google Scholar 

  7. J. Zheng, X. Li, R. Gu, T. Lu, J. Phys. Chem. B 106, 1019 (2002)

    Article  Google Scholar 

  8. Y.M. Ching, T.W. Tee, Z. Zainal, Int. J. Eletrochem. Sci. 6, 5305 (2011)

    Google Scholar 

  9. S. Gardonio, L. Gregoratti, D. Scaini, C. Castellarin-Cudia, Org. Electron. 9, 253 (2008)

    Article  Google Scholar 

  10. A. Jakubec, V. Tvarozek, I. Novotny, V. Rehacek, V. Breternitz, Ch. Knedlik, L. Spiess, Mat.-wiss. u. Werkstofftech 34, 662 (2003)

    Article  Google Scholar 

  11. C.K. Choi, A.E. English, K.D. Kihm, C.H. Margraves, J. Biomed. Opt. 12, 064028 (2007)

    Article  ADS  Google Scholar 

  12. C. Coutal, A. Azema, J.C. Roustan, Thin Solid Films 288, 248 (1996)

    Article  ADS  Google Scholar 

  13. C.A. Huang, K.C. Li, G.C. Tu, W.S. Wang, Electrochim. Acta 48, 3599 (2003)

    Article  Google Scholar 

  14. G. Arun, M. Eyini, P. Gunasekaran, Biotechnol. Bioprocess Eng. 19, 1083 (2014)

    Article  Google Scholar 

  15. H. Korbekandi, S. Iravani, Silver Nanoparticles Deliv. Nanoparticles 3, 36 (2012)

    Google Scholar 

  16. I.V. Kityk, J. Ebothé, K. Ozga, K.J. Plucinski, G. Chang, K. Kobayashi, M. Oyam, Phys. E 31, 38 (2006)

    Article  Google Scholar 

  17. G. Sandmann, H. Dietz, W.J. Plieth, Electroanal. Chem. 491, 72 (2000)

    Article  Google Scholar 

  18. B.S. Luk’yanchuk, A.E. Miroshnichenko, M.I. Tribelsky, Y.S. Kivshar, A.R. Khokhlov, New J. Phys. 14, 093022 (2012)

    Article  ADS  Google Scholar 

  19. P.K. Jain, S. Eustis, M.A. El-Sayed, J. Phys. Chem. B 110, 18243 (2006)

    Article  Google Scholar 

  20. J.B. Lassite, Complex Plasmonic Nanostructures: Symmetry Breaking and Coupled Systems (Rice University, Houston, 2012)

    Google Scholar 

  21. S. Lal, N.K. Grady, G.P. Goodrich, N.J. Halas, Nano Lett. 6, 2338 (2006)

    Article  ADS  Google Scholar 

  22. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  ADS  Google Scholar 

  23. D.W. Brandl, C. Oubre, P. Nordlander, J. Chern. Phys. 123, 024701 (2005)

    Article  ADS  Google Scholar 

  24. P. Nordlander, C. Oubre, E. Prodan, K. Li, M.I. Stockman, Nano Lett. 4, 899 (2004)

    Article  ADS  Google Scholar 

  25. C. Tabor, D. Van Haute, M.A. El-Sayed, ACS Nano 3, 3670 (2009)

    Article  Google Scholar 

  26. J. Wu, X. Lu, Q. Zhu, J. Zhao, Q. Shen, L. Zhan, W. Ni, Nano-Micro Lett. 6, 372 (2014)

    Article  Google Scholar 

  27. A.L. González, C. Noguez, J. Comput. Theor. Nanosci. 4, 231 (2007)

    Google Scholar 

  28. C. Noguez, J. Phys. Chem. C 111, 3806 (2007)

    Article  Google Scholar 

  29. H.X. Xu, M. Kall, Sens. Actuator B Chem. 87, 244 (2002)

    Article  Google Scholar 

  30. L. Tong, H. Wei, S. Zhang, H. Xu, Sensors 14, 7959 (2014)

    Article  Google Scholar 

  31. S.K. Cushing, J. Li, F. Meng, T.R. Senty, S. Suri, M. Zhi, M. Li, A.D. Bristow, N. Wu, J. Am. Chem. Soc. 134, 15033 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundation of China (51474069, 51374072), Program for New Century Excellent Talents in Heilongjiang Provincial University (1253-NCET-002), Research Project of Science and Technology of Heilongjiang Province (12541053, 12541096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sun Tao or Liu Chao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haiwei, M., Jingwei, L., Zhaoting, L. et al. Optical properties of local surface plasmon resonance in Ag/ITO sliced nanosphere by the discrete dipole approximation. Appl. Phys. A 122, 419 (2016). https://doi.org/10.1007/s00339-016-9954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9954-5

Keywords

Navigation