Skip to main content
Log in

Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the plasmonic response of gold nanospheres calculated using discrete dipole approximation validated against the results from other discretization methods, namely the finite-difference time-domain method and the finite-element methods. Comparisons are also made with calculations from analytical methods such as the Mie solution and the null-field method with discrete sources. We consider the nanoparticle interacting with the incident field both in free space and sitting on a planar substrate. In the latter case, discrete dipole approximation with surface interaction is used; this includes the interaction with the ‘image dipoles’ using Sommerfeld integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Nagao, G. Han, C. Hoang, J.S. Wi, A. Pucci, D. Weber, F. Neubrech, V.M. Silkin, D. Enders, O. Saito, M. Rana, Sci. Tech. Adv. Mater. 11, 054506 (2010)

    Article  Google Scholar 

  2. B. Schaffer, U. Hohenester, A. Trugler, F. Hofer, Phys. Rev. B 79, 041401 (2009)

    Article  ADS  Google Scholar 

  3. D.G. Georganopoulou, L. Chang, J.M. Nam, C.S. Thaxton, E.J. Mufson, W.L. Klein, C.A. Mirkin, Proc. Natl. Acad. Sci. USA. 102, 2273–2276 (2005)

    Article  ADS  Google Scholar 

  4. J.C.Y. Kah, K.W. Kho, C.G.L. Lee, C.J.R. Sheppard, Z.X. Shen, K.C. Soo, M.C. Olivo, Int. J. Nanomed. 2, 785–798 (2007)

    Google Scholar 

  5. H.M. Hiep, T. Endo, K. Kerman, M. Chikae, D.K. Kim, S. Yamamura, Y. Takamura, E. Tamiya, Sci. Tech. Adv. Mater. 8, 331–338 (2007)

    Article  Google Scholar 

  6. R. Esparza, G. Rosas, E. Valenzuela, S.A. Gamboa, U. Pal, R. Perez, Materia-Rio de Janeiro 13, 579–586 (2008)

    Google Scholar 

  7. M.P. Pileni, J. Phys. 23, 503102 (2011)

    Google Scholar 

  8. V.L.Y. Loke, M.P. Mengüç, T.A. Nieminen, JQSRT 112, 1711–1725 (2011)

    Article  ADS  Google Scholar 

  9. E. Purcell, C. Pennypacker, Astrophys. J. 186, 705–714 (1973)

    Article  ADS  Google Scholar 

  10. B. Draine, Astrophys. J. 333, 848–872 (1988)

    Article  ADS  Google Scholar 

  11. S. Ahmed, Electron. Lett. 4, 387–389 (1968)

    Article  Google Scholar 

  12. K.S. Yee, IEEE Trans. Antenn. Propag. 14, 302–307 (1966)

    Article  MATH  ADS  Google Scholar 

  13. L. Lorenz, Videnskabernes Selskabs Skrifter 6, 2–62 (1890)

    Google Scholar 

  14. G. Mie, Ann. Phys. 25, 377–445 (1908)

    Article  MATH  Google Scholar 

  15. T. Wriedt, JQSRT 106, 535–545 (2007)

    Article  ADS  Google Scholar 

  16. P.C. Waterman, Proc. IEEE 53, 805–812 (1965)

    Article  Google Scholar 

  17. T. Wriedt, JQSRT 110, 833–843 (2009)

    Article  ADS  Google Scholar 

  18. J. Parsons, C.P. Burrows, J.R. Sambles, W.L. Barnes, J. Mod. Opt. 57, 356–365 (2010)

    Article  MATH  ADS  Google Scholar 

  19. X.H. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Lasers Med. Sci.23, 217–228 (2008)

    Article  Google Scholar 

  20. K.M.M. Aung, Y.N. Tan, K.V. Desai, X.D. Su, Aust. J. Chem. 64, 1286–1292 (2011)

    Article  Google Scholar 

  21. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond. (Wiley, New York, 2011)

    Book  Google Scholar 

  22. A. Vial, T. Laroche, Appl. Phys. B 93, 139–143 (2008)

    Article  ADS  Google Scholar 

  23. W. Sellmeier, Ann. Phys. Chem. 219, 272–282 (1871)

    Article  ADS  Google Scholar 

  24. R. Luebbers, F.P. Hunsberger, K.S. Kunz, R.B. Standler, M. Schneider, IEEE Trans. Electromagn. Compat. 32, 222–227 (1990)

    Article  Google Scholar 

  25. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491–1499 (1994)

    Article  ADS  Google Scholar 

  26. V.L.Y. Loke, M.P. Mengüç, in Proceedings of ELS XII Helsinki 134–137 (2010)

  27. Y. Saad, M.H. Schultz, SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. B.T. Draine, J. Goodman, Astrophys. J. 405, 685–697 (1993)

    Article  ADS  Google Scholar 

  29. V.L.Y. Loke, M.P. Mengüç, J. Opt. Soc. Am. A 27, 2293–2303 (2010)

    Article  Google Scholar 

  30. A. Sommerfeld, Ann. Physik 28, 665–736 (1909)

    Article  MATH  ADS  Google Scholar 

  31. W.C. Chew, Waves, Fields in Inhomogeneous Media. (Van Nostrand Reinhold, New York, 1990)

    Google Scholar 

  32. R. Schmehl, B.M. Nebeker, E.D. Hirleman, J. Opt. Soc. Am. A 14, 3026–3036 (1997)

    Article  ADS  Google Scholar 

  33. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)

    Google Scholar 

  34. J.P. Berenger, J. Comput. Phys. 114, 185–200 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. Z.S. Sacks, D.M. Kingsland, R. Lee, J.F. Lee, IEEE Trans. Antenn. Propag. 43, 1460–1463 (1995)

    Article  ADS  Google Scholar 

  36. S. Gedney, IEEE Trans. Antennas Propagat AP-44, 1630–1639 (1996)

    Article  ADS  Google Scholar 

  37. J.A. Roden, S.D. Gedney, Microw. Opt. Tech. Lett. 27, 334–339 (2000)

    Article  Google Scholar 

  38. Lumerical FDTD Solutions Package Reference Guide for FDTD Solutions v7.0.1 ed (2010)

  39. M.A. Morgan, K.K. Mei, IEEE Trans. Antenn. Propag. 27, 202–214 (1979)

    Article  ADS  Google Scholar 

  40. R. Mittra, O. Ramahi, Finite element and finite difference methods in Electromagnetic Scattering, vol. II, ed. by M. Morgan (Elsevier, New York, 1990)

    Google Scholar 

  41. J.L. Volakis, A. Chatterjee, L.C. Kempel, Finite Element Method for Electromagnetics. (IEEE Press, New York, 1998)

    Book  MATH  Google Scholar 

  42. X.Q. Sheng, J.M. Jin, J.M. Song, C.C. Lu, W.C. Chew, IEEE T. Antenn. Propag. 46, 303–311 (1998)

    Article  ADS  Google Scholar 

  43. COMSOL Multiphysics RF Module Reference Guide v3.5a ed (2008)

  44. G.M. Huda, E.U. Donev, M.P. Mengüç, J.T. Hastings, Opt. Express 19, 12679–12687 (2011)

    Article  Google Scholar 

  45. COMSOL Mie scattering off plasmonic nanoparticle and radar cross-section computations (2008) http://www.comsol.com/showroom/gallery/3459/

  46. P. Debye, Ann. Phys. 30, 57–136 (1909)

    Article  MATH  Google Scholar 

  47. C. Mätzler, MATLAB functions for Mie scattering and absorption v2 Tech. Rep. Research Report No. 2002-11 University of Bern (2002)

  48. A. Doicu, Y.A. Eremin, T. Wriedt, Opt. Commun. 159, 266–277 (1999)

    Article  ADS  Google Scholar 

  49. A. Doicu, Y. Eremin, T. Wriedt, Comput. Phys. Commun. 134, 1–10 (2001)

    Article  MATH  ADS  Google Scholar 

  50. M.I. Mishchenko, L.D. Travis, A.A. Lacis, Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  51. D.W. Mackowski, JQSRT 109 770–788 ISSN 0022-4073 (2008) http://www.sciencedirect.com/science/article/pii/S0022407307002282

  52. M. Quinten, A. Pack, R. Wannemacher, Appl. Phys. B 68, 87–92 (1999)

    Article  ADS  Google Scholar 

  53. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  54. M.A. Yurkin, A.G. Hoekstra, JQSRT 112, 2234–2247 (2011)

    Article  ADS  Google Scholar 

  55. M.A. Yurkin, de D. Kanter, A.G. Hoekstra, J. Nanophoton. 4, 041585 (2010)

    Article  ADS  Google Scholar 

  56. M.A. Yurkin, M. Min, A.G. Hoekstra, Phys. Rev. E 82, 036703–12 (2010)

    Article  ADS  Google Scholar 

  57. N. Geuquet, L. Henrard, Ultramicroscopy 110, 1075–1080 (2010)

    Article  Google Scholar 

  58. R.J. Lytle, D.L. Lager, Numerical evaluation of Sommerfeld integrals. Technical report (1974). UCRL-51688 Lawrence Livermore Laboratory Livermore, California

Download references

Acknowledgments

This work was supported by the US National Science Foundation (NSF Grant no. CMMI-0800658), the TUBITAK-1001 (Grant no. 109M170) and the FP-7-PEOPLE-IRG-2008 (Grant no. 239382 NF-RAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Y. Loke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loke, V.L.Y., Huda, G.M., Donev, E.U. et al. Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres. Appl. Phys. B 115, 237–246 (2014). https://doi.org/10.1007/s00340-013-5594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5594-z

Keywords

Navigation