Skip to main content
Log in

Investigations on the growth, optical, thermal, dielectric, and laser damage threshold properties of crystal violet dye-doped potassium acid phthalate single crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Influence of crystal violet dye with different concentration on potassium acid phthalate single crystal grown by conventional method has been studied. No change has been observed in the structure, whereas changes have been observed in the external morphology of the crystal when the dyes are incorporated in the crystal lattice. Thermogravimetric and differential thermal analyses show the onset decomposition temperatures to be at 302, 285, 284, and 285 °C for pure, 0.1, 0.3, and 0.5 mol% crystal violet-doped potassium acid phthalate crystals, respectively. The dielectric measurement was carried out on the grown crystals as a function of frequency at various temperatures. In addition, strong luminescent emission bands at 638, 648, and 640 nm were observed in which the relative intensity was found to be reversed as a result of doping concentration. The laser damage threshold value significantly increased for dye-doped crystal in comparison with pure crystal which may make it suitable for the solid-state dye laser applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Sangwal, K. Woijcik, J. Borc, Cryst. Res. Technol. 38, 684 (2003)

    Article  Google Scholar 

  2. N. Kubota, Cryst. Res. Technol. 36, 749 (2001)

    Article  Google Scholar 

  3. A.K. Karnal, A. Saxena, H.L. Bhat, V.K. Wadhawan, T.P.S. Nathan, J. Cryst. Growth 289, 617 (2006)

    Article  ADS  Google Scholar 

  4. L.A.M.J. Jetten, B. van der Hoek, W.J.P. van Enckevort, J. Cryst. Growth 62, 603 (1983)

    Article  ADS  Google Scholar 

  5. M.H.J. Hottenhuis, C.B. Lucasius, J. Cryst. Growth 94, 708 (1989)

    Article  ADS  Google Scholar 

  6. G.R. Ester, P.J. Halfpenny, J. Cryst. Growth 187, 111 (1998)

    Article  ADS  Google Scholar 

  7. D.M. Wang, A.H.J.M. VanAert, E. DeBoer, Mol. Phys. 67, 799 (1989)

    Article  ADS  Google Scholar 

  8. K. Uthayarani, R. Sankar, C.K. Shashidharan Nair, Cryst. Res. Technol. 43, 733 (2008)

    Article  Google Scholar 

  9. S.R. Geetha, R. Perumal, S. Moorthy Babu, P.M. Anbarasan, Cryst. Res. Technol. 41, 221 (2003)

    Article  Google Scholar 

  10. G. Vasudevan, P. AnbuSrinivasan, G. Madhurambal, S.C. Mojumdar, J. Therm. Anal. Calorim. 96, 99 (2009)

    Article  Google Scholar 

  11. L. Beck, P. Stemmler, F. Legrand, Rev. Sci. Instr. 66, 1601 (1995)

    Article  ADS  Google Scholar 

  12. J.B. Benedict, P.M. Wallace, P.J. Reid, S.-H. Jang, B. Kahr, Adv. Mater. 15, 1608 (2003)

    Article  Google Scholar 

  13. N. Kejalakshmy, K. Srinivasan, J. Phys. D Appl. Phys. 36, 1778 (2003)

    Article  ADS  Google Scholar 

  14. A. Elakkina Kumaran, P. Kanchana, C. Sekar, Spectrochem. Acta A Biomol. Spectrosc. 91, 370 (2012)

    Article  ADS  Google Scholar 

  15. S. Timpanaro, A. Sassella, A.Z. Borghesi, W. Porzio, P. Fontaine, M. Goldmann, Adv. Mater. 3, 127 (2001)

    Article  Google Scholar 

  16. M.H.J. Hottenhuis, C.B. Lucasius, J. Cryst. Growth 91, 623 (1988)

    Article  ADS  Google Scholar 

  17. P. Kanchana, A. Elakkina Kumaran, Y. Hayakawa, C. Sekar, Spectrochem. Acta A Biomol. Spectrosc. 103, 187 (2013)

    Article  ADS  Google Scholar 

  18. R. Ashok Kumar, N. Sivakumar, R. Ezhil Vizhi, D. Rajan Babu, Phys. B 406, 985 (2011)

    Article  ADS  Google Scholar 

  19. B. Raju, A. Saritha, G. Bhagavannarayana, K.A. Hussain, J. Cryst. Growth 324, 184 (2011)

    Article  ADS  Google Scholar 

  20. I. Yu Velikhov, I. Pirutla, M. Ganina, V. Kolybayeva, A.N.L. Puzikov, Cryst. Res. Technol. 42, 27 (2007)

    Article  Google Scholar 

  21. I. Pritula, V. Gayvoronsky, Yu. Gromov, M. Kopylovsky, M. Kolybaeva, V. Puzikov, A. Kosinova, Yu. Savvin, Yu. Velikhov, A. Levchenko, Opt. Commun. 282, 1141 (2009)

    Article  ADS  Google Scholar 

  22. H. Youping, C. Jianrong, S. Genbo, X. Zhuang, G. Lee, R. Jiang, J. Cryst. Growth 233, 809 (2001)

    Article  ADS  Google Scholar 

  23. E.B. Rudneva, V.L. Mamomenova, L.F. Malakhova, A.E. Voloshin, T.N. Smirnova, Crystallogr. Rep. 51, 344 (2006)

    Article  ADS  Google Scholar 

  24. S. Bhandari, N. Sinha, G. Ray, B. Kumar, Chem. Phys. Lett. 591, 10 (2014)

    Article  ADS  Google Scholar 

  25. T. Prasanyaa, M. Haris, V. Mathivanan, M. Amgalan, V. Jayaramakrishnan, J. Therm. Anal. Calorim. 117, 285 (2014)

    Article  Google Scholar 

  26. S. Chandran, R. Paulraj, P. Ramasamy, Mater. Res. Bull. 68, 210 (2015)

    Article  Google Scholar 

  27. Nidhi Sinha, Sonia Bhandari, Harsh Yadav, Geeta Ray, Sanjay Godara, Nidhi Tyagi, Jyoti Dalal, Sonu Kumar, B. Kumar, CrystEngComm 17, 5757 (2015)

    Article  Google Scholar 

  28. M. Enculescu, Phys. B 405, 3722 (2010)

    Article  ADS  Google Scholar 

  29. M. Enculescu, Opt. Mater. 32, 281 (2009)

    Article  ADS  Google Scholar 

  30. M. Enculescu, E. Matei, N. Preda, I. Enculescu, Optoelectron. Adv. Mater. Rapid Commun. 3, 1210 (2009)

    Google Scholar 

  31. J. Kunzler, L. Samha, R. Zhang, H. Samha, Am. J. Undergrad. Res. 9, 1 (2011)

    Google Scholar 

  32. P. Rajesh, A. Silambarasan, P. Ramasamy, Mater. Res. Bull. 49, 640 (2014)

    Article  Google Scholar 

  33. G. Peramaiyan, P. Pandi, G. Bhagavannarayana, R. Mohan Kumar, Spectrochem. Acta A Biomol. Spectrosc. 99, 27 (2012)

    Article  ADS  Google Scholar 

  34. N. Sinha, N. Goel, B.K. Singh, M.K. Gupta, B. Kumar, J. Solid State Chem. 190, 180 (2012)

    Article  ADS  Google Scholar 

  35. A.P. Levanyuk, V.V. Osipov, A.S. Sigov, A.A. Sobyanin, ZheTP 76, 345 (1979)

    ADS  Google Scholar 

  36. K.V. Rao, A. Smakula, J. Appl. Phys. 36, 2031 (1965)

    Article  ADS  Google Scholar 

  37. K.V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966)

    Article  ADS  Google Scholar 

  38. R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochem. Acta A Biomol. Spectrosc. 76, 523 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. K. Venu Gopal Rao, ACRHEM, University of Hyderabad, for extending the laser damage threshold facilities and Dr. Denison, Head, Department of Physics, S. T. Hindu College, India, for providing the dielectric measurement facilities. One of the author G. B. Rao thank SSN TRUST for providing Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, G.B., Rajesh, P. & Ramasamy, P. Investigations on the growth, optical, thermal, dielectric, and laser damage threshold properties of crystal violet dye-doped potassium acid phthalate single crystal. Appl. Phys. A 122, 175 (2016). https://doi.org/10.1007/s00339-016-9693-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9693-7

Keywords

Navigation