Skip to main content
Log in

Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser-produced Si plasma is employed as an ion source for implantation on the brass substrate for its surface, structural, and mechanical modifications. Thomson parabola technique is employed for the measurement of energy and flux of Si ions using CR-39. In response to stepwise increase in number of laser pulses from 3000 to 12000, four brass substrates were implanted by laser-induced Si plasma ions of energy 290 keV at different fluxes ranging from 45 × 1012 to 75 × 1015 ions/cm2. SEM analysis reveals the formation of nano/micro-sized irregular shaped cavities and pores for the various ion fluxes for varying numbers of laser pulses from 3000 to 9000. At the maximum ion flux for 12,000 pulses, distinct and organized grains with hexagonal and irregular shaped morphology are revealed. X-ray diffractometer (XRD) analysis exhibits that a new phase of CuSi (311) is identified which confirms the implantation of Si ions in brass substrate. A significant decrease in mechanical properties of implanted brass, such as Yield Stress (YS), Ultimate Tensile Strength (UTS), and hardness, with increasing laser pulses from 3000 to 6000 is observed. However, with increasing laser pulses from 9000 to a maximum value of 12,000, an increase in mechanical properties like hardness, YS, and UTS is observed. The generation as well as annihilation of defects, recrystallization, and intermixing of Si precipitates with brass matrix is considered to be responsible for variations in surface, structural, and mechanical modifications of brass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.Y. Sharkov, R. Scrivens, Trans. Plasma Phys. 33, 1778–1785 (2005)

    Article  ADS  Google Scholar 

  2. A.L. Stepanov, Rev. Adv. Mater. Sci. 30, 150–165 (2012)

    Google Scholar 

  3. S.S. Harilal, M.S. Tillack, B. O’Shay, C.V. Bindhu, F. Najmabadi, Phys. Rev. E 69, 026413–026411 (2004)

    Article  ADS  Google Scholar 

  4. J. Piekoszewski, Z. Werner, W. Szymczyk, Vacuum 63, 475–481 (2001)

    Article  Google Scholar 

  5. L. Laska, K. jungwirth, B. Krlikova, J. Krasa, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Badziak, P. Parys, J. Wolowski, E. Woryna, S. Gammino, L. Torrisi, F. P. Boody, H. Hora, Plasma Phys. Control. Fusion 45, 585–599 (2003)

  6. D.J. Umstadter, J. Phys. Appl. Phys. 36, R151–R165 (2003)

    Article  Google Scholar 

  7. L. Torrisi, D. Margarone, S. Gammino, L. Ando, Laser Part. Beam. 25, 453–464 (2007))

  8. J.P. Xin, X.P Zhu, M.K. Lei, Laser Part. Beam. 28, 429–436 (2010)

    Article  ADS  Google Scholar 

  9. M. Cutroneo, A. Mackova, P. Malinsky, J. Matousek, L. Torrisi, J. Ullschmied, Nucl. Inst. Meths. B 354, 56–59 (2015)

    Article  ADS  Google Scholar 

  10. L. Torrisi, A.M. Mezzasalma, S. Gammino, J. Badziak, P. Parys, J. Wolowski, L. Laska, G. Franco, Appl. Surf. Sci. 252(24), 8533–8538 (2006)

    Article  ADS  Google Scholar 

  11. J. Wolowski, J. Badziak, A. Czarnecka, P. Parys, M. Pisarek, M. Rosinski, R. Turan, S. Yerci, Laser Part. Beam. 25, 65–69 (2007)

    ADS  Google Scholar 

  12. J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.C. Tran, J. Appl. Phys. 62(11), 4591–4596 (1987)

    Article  ADS  Google Scholar 

  13. Y.P. Sharkeev, A.J. Perry, D.E. Geist, I.A, Ryabchikov, A.S. Tailashev, N.V. Girsova, E.V. Kozlov, Thin Solid Films 308–309, 393–398 (1997)

    Article  Google Scholar 

  14. V. Jelenkovic, S. To, B. Sundaravel, G. Xiao, H. Huang, Appl. Phys. A 122(708), 1–8 (2016)

    Google Scholar 

  15. S.B. Ogale, S.M. Kanetkar, Nucl. Inst. Meths. B 59(60), 1350–1354 (1991)

  16. A.M. Serventia, M. Vittori Antisaria, L. Guzmanb, A. Miotello, Philos. Mag 76, 549–557 (2006)

    Article  ADS  Google Scholar 

  17. R. Ahmad, M.S. Rafique, M.B. Tahir, H. Malik, Laser Part. Beam. 32, 261–270 (2014)

    Article  ADS  Google Scholar 

  18. M.S. Rafique, S. Bashir, A. Ajami, W. Husinsky, Appl. Phys. A 100, 1183–1189 (2010)

    Article  ADS  Google Scholar 

  19. M.S. Rafique, M.K. Rahman, A. Rehman, K. Siraj, M.F. Khan, Laser Phys. 17(3), 282–285 2007

    Article  ADS  Google Scholar 

  20. V.N. Rai, M. Shukla, H.C. Pant, Pramana. J. Phys. 55(5), 773–779 (2000)

    Article  ADS  Google Scholar 

  21. J. Wolowski, L. Celona, G. Ciavola, S. Gammino, J. Krasa, L. Laska, P. Parys, K. Rohlena, L. Torrisi, E. Woryna, Laser Part. Beam. 20, 113–118 (2002)

    Article  ADS  Google Scholar 

  22. L. Torrisi, D. Margarone, S. Gammino, L. Andò, Rad. Effect. Defect. Solid. 163(4–6), 261–269 (2008)

  23. X.K. Shen, Y.F. Lu, T. Gebre, H. Ling, X.Y. Han, J. Appl. Phys. 100, 053303–053307 (2006)

    Article  ADS  Google Scholar 

  24. J.P. Biersack, J.F. Ziegler, http://www.srim.org (2008)

  25. S. Ahmad, S. Bashir, N. Ali, U. Kalsoom, D. Yousaf, F. Haq, A. Naeem, R. Ahmad, M.K. Rahman, Nucl. Instr. Meths. B 325, 5–10 (2014)

    Article  ADS  Google Scholar 

  26. R.E. Voskoboinikov, Yu.N. Osetsky, D.J. Bacon, J. Nucl. Mat. 377, 385–395 (2008)

    Article  ADS  Google Scholar 

  27. D. Kaoumi, A.T. Motta, R.C. Birtcher, J. Appl. Phys. 104, 073525 (2008)

    Article  ADS  Google Scholar 

  28. W.B. Liu, C. Zhang, Y.Z. Ji, Z.G. Yang, H. Zang, T.L. Shen, L.Q. Chen, Appl. Phys. Lett. 105, 121905–121910 (2014)

    Article  ADS  Google Scholar 

  29. R.F.C. Azevedo, Eng. Fail. Anal. 18, 1921–1942 (2011)

    Article  Google Scholar 

  30. C.W. Passchier, R.A.J. Trouw, Microtectonics (Verlag, Berlin, 1998)

    Book  Google Scholar 

  31. S.B. Ogale, S.M. Kanetkar, R.N. Dikshit, V.N. Koinkar, S.V. Rajershee, S.M. Chaudhari, V.P. Godbole, Nucl. Inst. Meths. B 59/60, 1350–1354 (1991)

    Article  ADS  Google Scholar 

  32. S. Shanmugan, D. Mutharasu, Rad. Phys. Chem. 81, 201–207 (2012)

    Article  ADS  Google Scholar 

  33. A. Latif, M. Khaleeq-ur-Rahman, K.A. Bhatti, M.S. Rafique, Z.H. Rizvi, Phys. B 405, 4250–4255 (2010)

    Article  ADS  Google Scholar 

  34. R.Y. Lee, B.S. Choi, J.H. Song, K.W. Kim, S.T. Kang, C.N. Whang, Nucl. Inst. Meths. B 59/60, 532–536 (1991)

    Article  ADS  Google Scholar 

  35. M.K. Rahman, M.Z. Butt, A. Samuel, K. Siraj, Vacuum 85, 474–479 (2010)

    Article  ADS  Google Scholar 

  36. T. Matsushima, M. Satou, A. Hasegawa, K. Abe, H. Kayano, J. Nucl. Mat. 258(263), 1497–1501 1998

    Article  ADS  Google Scholar 

  37. I.M. Ghauri, N. Afzal, M. Shahzad, F.E. Mubarik, Rad. Effect. Defect. Solid. 166 (3), 228–232 (2011)

    Article  ADS  Google Scholar 

  38. E.A. Little, Intern. l Metal. Rev. 21, 25–60 (1976)

    Google Scholar 

  39. D.J. Bacon, A.F. Calder, F. Gao, V.G. Kapinos, S.J. Wooding, Nucl. Inst. Meths. B 102, 37–46 (1995)

    Article  ADS  Google Scholar 

  40. I.M. Ghauri, N. Afzal, J. Phys. D: Appl. Phys. 40, 6044–6047 (2007)

    Article  ADS  Google Scholar 

  41. M.A. Yutian, Z. Ying, L.U. Guanghong, Z. Kaigui, Sci. China Phys. Mech. Astr. 56 (7), 1396–1400 2013

    Article  Google Scholar 

  42. D.C. Agarwal, F. Singh, D. Kabiraj, S. Sen, P.K. Kulariya, I. Sulania, S. Nozaki, R.S. Chauhan, D.K. Avasthi, J. Phys. D Appl. Phys. 41, 045305 (2008)

    Article  ADS  Google Scholar 

  43. W. D. Callister Jr, Mat Sci Eng USA (2007)

  44. S.Y.A. Surdutovich, E. Phys. Rev. E 82, 051915 (2010)

    Article  ADS  Google Scholar 

  45. J.V. Wood, Nucl. Inst. Meths. B 19(20), 253–258 (1987)

    ADS  Google Scholar 

  46. P.B. Madakso, J. Phys. D Appl. Phys 18, 531–540 (1985)

    Article  ADS  Google Scholar 

  47. V. Muthukumaran, V. Selladurai, A. Reghuraj, M. Senthilkumar, Acta Mech. Slov. 14, 80–87 (2010)

    Google Scholar 

  48. K. Hanamoto, M. Sasaki, T. Miyashita, Y. Kido, Y. Nakayama, Y. Kawamoto, M. Fujiwara, R. Kaigawad, Nucl. Inst. Meths. B 129, 228–232 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Prof. Dr. Raiz Ahmad and Dr. Tousif Hussain for providing facility of SEM and XRD analyses. We are also indebted to Mr. Sajjad Ahmad and Mr. M. Aftab Shafique for cooperation in tensile testing, microhardness, and drafting. The authors would like to thank Higher Education commission of Pakistan for funding the project “Up gradation of Laser facilities, GC University Lahore”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Bashir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Bashir, S., Rafique, M.S. et al. Growth of surface structures correlated with structural and mechanical modifications of brass by laser-induced Si plasma ions implantation. Appl. Phys. A 123, 223 (2017). https://doi.org/10.1007/s00339-016-0750-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0750-z

Keywords

Navigation