Skip to main content
Log in

Shellac/nanoparticles dispersions as protective materials for wood

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Wood is a natural material that finds numerous and widespread applications, but is subject to different decay processes. Surface coating is the most common method used to protect wood against deterioration and to improve and stabilize its distinctive appearance. Shellac is a natural resin that has been widely used as a protective material for wooden artefacts (e.g. furniture, musical instruments), due to its excellent properties. Nevertheless, diffusion of shellac-based varnishes has significantly declined during the last decades, because of some limitations such as the softness of the coating, photo-degradation, and sensitivity to alcoholic solvents and to pH variations. In the present study, different inorganic nanoparticles were dispersed into dewaxed natural shellac and the resulting materials were investigated even after application on wood specimens in order to assess variations of the coating properties. Analyses performed by a variety of experimental techniques have shown that dispersed nanoparticles do not significantly affect some distinctive and desirable features of the shellac varnish such as chromatic aspect, film-forming ability, water repellence, and adhesion. On the other hand, the obtained results suggested that some weak points of the coating, such as low hardness and poor resistance to UV-induced ageing, can be improved by adding ZrO2 and ZnO nanoparticles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. George, E. Suttie, A. Merlin, X. Deglise, Polym. Degrad. Stab. 88, 268–274 (2005)

    Article  Google Scholar 

  2. N. Auclair, B. Riedl, V. Blanchard, P. Blanchet, For. Prod. J. 61, 20–27 (2011)

    Google Scholar 

  3. J.C. Schelleng, J. Acoust. Soc. Am. 44, 1175–1183 (1968)

    Article  ADS  Google Scholar 

  4. R. Rodriguez, E. Arteaga, D. Rangel, R. Salazar, S. Vargas, M. Estevez, J. Non-Cryst, Solids 355, 132–140 (2009)

    Google Scholar 

  5. P.K. Bose, Y. Sankaranarayanan, S.C. Sengupta, Chemistry of Lac, vol. 1 (Indian Lac Research Institute, Ranchi, 1963)

    Google Scholar 

  6. S. Limmatvapirat, D. Panchapornpon, C. Limmatvapirat, J. Nunthanid, M. Luangtana-Anan, S. Puttipipatkhachorn, Eur. J. Pharm. Biopharm. 70, 335–344 (2008)

    Article  Google Scholar 

  7. L. Wang, Y. Ishida, H. Ohtani, S. Tsuge, Anal. Chem. 71, 1316–1322 (1999)

    Article  Google Scholar 

  8. J. Wang, L. Chen, Y. He, Prog. Org. Coat. 62, 307–312 (2008)

    Article  Google Scholar 

  9. S.K. Sharma, S.K. Shukla, D.N. Vaid, Def. Sci. J. 33, 261–271 (1983)

    Article  Google Scholar 

  10. Y. Farag, C.S. Leopold, Dissolut. Technol. 16, 33–39 (2009)

    Article  Google Scholar 

  11. E.J. Parry, Shellac: its production, manufacture, chemistry analysis, commerce and uses (Sir I. Pitman & Sons, London, 1935), p. 3

    Google Scholar 

  12. N. Umney, S. Rivers, Conservation of furniture (Butterworth–Heinemann, Oxford, 2003)

    Google Scholar 

  13. M. Licchelli, M. Malagodi, M. Somaini, M. Weththimuni, C. Zanchi, Surf. Eng. 29, 121–127 (2013)

    Article  Google Scholar 

  14. N. Pearnchob, A. Dashevsky, R. Bodmeier, J. Control. Release 94, 313–321 (2004)

    Article  Google Scholar 

  15. C.T. Rhodes, S.C. Porter, in Encyclopedia of controlled drug delivery, ed. by E. Mathiowitz (Wiley & Sons, New York, 1999), pp. 299–311

    Google Scholar 

  16. A. Baldwin, in Edible coatings and films to improve food quality, ed. by J.M. Krochta, et al. (Technomic Publishing Company, Lancaster, PA, 1994), pp. 25–64

    Google Scholar 

  17. D.P. The, F. Debeaufort, D. Luu, A. Voilley, J. Membr. Sci. 325, 277–283 (2008)

    Article  Google Scholar 

  18. J. Bai, R.D. Hagenmaier, E.A. Baldwin, J. Agric. Food Chem. 50, 7660–7668 (2002)

    Article  Google Scholar 

  19. B.H. Tai, J. Violin Soc. Am.: VSA papers. 23, 1–31 (2009)

    MathSciNet  Google Scholar 

  20. W.H. Gardner, W.F. Whitmore, Ind. Eng. Chem. 21, 226–229 (1929)

    Article  Google Scholar 

  21. S. Limmatvapirat, J. Nuntanid, M. Luangtana-Anan, S. Puttipipatkhachorn, Pharm. Dev. Technol. 1, 41–46 (2005)

    Article  Google Scholar 

  22. H. Goesmann, C. Feldmann, Angew. Chem. Int. Ed. 49, 1362–1395 (2010)

    Article  Google Scholar 

  23. H. Althues, J. Henle, S. Kaskel, Chem. Soc. Rev. 36, 1454–1465 (2007)

    Article  Google Scholar 

  24. P.M. Ajayan, L.S. Schadler, P. Braun, Nanocomposite science and technology (Wiley-VCH, Weinheim, 2003)

    Book  Google Scholar 

  25. J. Salla, K.K. Pandey, K. Srinivas, Polym. Degrad. Stab. 97, 592–596 (2012)

    Article  Google Scholar 

  26. F. Weichelt, R. Emmler, R. Flyunt, E. Beyer, M.R. Buchmeiser, M. Beyer, Macromol. Mater. Eng. 295, 130–136 (2010)

    Google Scholar 

  27. F. Aloui, A. Ahajji, Y. Irmouli, B. George, B. Charrier, A. Merlin, App. Surf. Sci. 253, 3737–3745 (2007)

    Article  ADS  Google Scholar 

  28. N.S. Allen, M. Edge, A. Ortega, G. Sandoval, C.M. Liauw, J. Verran, J. Stratton, R.B. McIntyre, Polym. Degrad. Stab. 85, 927–946 (2004)

    Article  Google Scholar 

  29. R.R. Devi, T.K. Maji, Ind. Eng. Chem. Res. 51, 3870–3880 (2012)

    Article  Google Scholar 

  30. S.K. Dhoke, R. Bhandari, A.S. Khanna, Prog. Org. Coat. 4, 39–46 (2009)

    Article  Google Scholar 

  31. M. Vlad-Cristea, B. Riedl, P. Blanchet, E. Jimenez-Pique, Eur. Polym. J. 48, 441–453 (2012)

    Article  Google Scholar 

  32. C. Sow, B. Riedl, P. Blanchet, J. Coat. Technol. Res. 8, 211–221 (2011)

    Article  Google Scholar 

  33. E. Amerio, P. Fabbri, G. Malucelli, M. Messori, M. Sangermano, R. Taurino, Prog. Org. Coat. 62, 129–133 (2008)

    Article  Google Scholar 

  34. J. Nagyvary, J.A. DiVerdi, N.L. Owen, H.D. Tolley, Nature 444, 565 (2006)

    Article  ADS  Google Scholar 

  35. M. Licchelli, M. Malagodi, M. Weththimuni, C. Zanchi, Appl. Phys. A 114, 673–683 (2014)

    Article  ADS  Google Scholar 

  36. R. Giorgi, L. Dei, P. Baglioni, Stud. Conserv. 45, 154–161 (2000)

    Google Scholar 

  37. A. Turco, Coloritura verniciatura e laccatura del legno, 3rd edn. (Hoepli, Milan, 2005)

    Google Scholar 

  38. UNI EN 15886:2010, Conservation of cultural property—test methods—colour measurement of surfaces (Ente Nazionale Italiano di Unificazione, Milan, 2010)

  39. ASTM D523-14, Standard test method for specular gloss (ASTM International, West Conshohocken, 2014)

  40. S. Limmatvapirat, D. Panchapornpon, C. Limmatvapirat, J. Nunthanid, M. Luangtana-Anan, S. Puttipipatkhachorn, Eur. J. Pharm. Biopharm. 67, 690–698 (2007)

    Article  Google Scholar 

  41. ISO 15184:1998, Paints and varnishes—Determination of film hardness by pencil test (International Organization for Standardization, Genève, 1998)

  42. ASTM D3359-09e2, Standard test methods for measuring adhesion by tape test (ASTM International, West Conshohocken, 2009)

  43. N. Poovarodom, W. Permyanwattana, J. Thermoplast. Compos. Mater. 28, 597–609 (2015)

    Article  Google Scholar 

  44. A. Tsakalof, P. Manoudis, I. Karapanagiotis, I. Chryssoulakis, C. Panayiotou, J. Cult. Herit. 8, 69–72 (2007)

    Article  Google Scholar 

  45. M. Brugnara, C. Della Volpe, A. Penati, S. Siboni, T. Poli, L. Toniolo, Ann. Chim. 93, 881–888 (2003)

    Google Scholar 

  46. M. Brugnara, E. Degasperi, C. Della Volpe, D. Maniglio, A. Penati, S. Siboni, L. Toniolo, T. Poli, S. Invernizzi, V. Castelvetro, Coll. Surf. A 241, 299–312 (2004)

    Article  Google Scholar 

  47. G.S. Banker, G.A. Agyilirah, in Polymers for controlled drug delivery, ed. by P.J. Tarcha (CRC Press, London, 1999), pp. 39–66

    Google Scholar 

  48. S. Sinha Ray, M. Okamoto, Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  Google Scholar 

  49. S. Pavlidou, C.D. Papaspyrides, Prog. Polym. Sci. 33, 1119–1198 (2008)

    Article  Google Scholar 

  50. A.C. Thompson, D. Vaughan, X-ray data booklet, 2nd edn. (Lawrence Berkeley National Laboratory, University of California, Berkeley, 2001)

    Google Scholar 

  51. H. Younan, L. Binghai, M. Zhiqiang, J. Teong, in Proceedings of 15th International Symposium on the Physical and Failure Analysis of Integrated Circuits, (IEEE Xplore Digital Library, 2008), http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4588206. Accessed 10 June 2016

  52. C. Coelho, R. Nanabala, M. Ménager, S. Commereuc, V. Verney, Polym. Degrad. Stab. 97, 936–940 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Davide Ravelli (Department of Chemistry, University of Pavia) for assistance in ageing tests and Prof. Claudio Canevari (Civica Scuola di Liuteria, Milan, Italy) for fruitful discussions and for providing shellac and maple specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Licchelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weththimuni, M.L., Capsoni, D., Malagodi, M. et al. Shellac/nanoparticles dispersions as protective materials for wood. Appl. Phys. A 122, 1058 (2016). https://doi.org/10.1007/s00339-016-0577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0577-7

Keywords

Navigation