Skip to main content
Log in

UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

The effect of alumina and silica nanoparticles on mechanical, optical, and thermal properties of UV-waterborne nanocomposite coatings was investigated. The addition of nanoalumina and nanosilica was shown to decrease the hardness because of nanoparticle aggregation. In comparison to the neat coating and despite the presence of aggregates, the scratch resistance of nanocomposite coatings was significantly improved. As expected, the gloss of UV-waterborne coatings was reduced following the addition of nanoparticles due to an increase of the surface roughness. Alumina and silica nanoparticles were found to enhance the glass transition temperature of PUA nanocomposite coatings by hindering the mobility of macromolecular chains at the interface around the nanoparticles. Finally, the interest and efficiency of grafting trialkoxysilanes was demonstrated with the study of nanosilica behavior. Not only was the dispersion of nanosilica enhanced following trialkoxysilanes grafting onto silica nanoparticles, but also the scratch resistance and the adhesion of UV-waterborne coatings containing nanosilica markedly increased even with 1 wt% content. Silica which is recommended in the wooden furniture and kitchen cabinet manufacturing industry as nano-reinforcement provides improved properties well suited in surface coating applications to efficiently protect surface of wood substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Müller, B, Poth, U, La Formulation des Peintures et Vernis. Eurocol, Offranville, 2004

    Google Scholar 

  2. Masson, F, Decker, C, Jaworek, T, Schwalm, R, “UV-Radiation Curing of Waterbased Urethane–Acrylate Coatings.” Prog. Org. Coat., 39 115–126 (2000)

    Article  CAS  Google Scholar 

  3. Tauber, A, Scherzer, T, Mehnert, R, “UV Curing of Aqueous Polyurethane Acrylate Dispersions. A Comparative Study by Real-time FTIR Spectroscopy and Pilot Scale Curing.” J. Coat. Technol. Res., 72 (911) 51–60 (2000)

    Article  CAS  Google Scholar 

  4. Sow, C, Riedl, B, Blanchet, P, “Kinetic Studies of UV-Waterborne Nanocomposite Formulations with Nanoalumina and Nanosilica.” Prog. Org. Coat. doi:10.1016/j.porgcoat.2009.10.002 (2009)

  5. Liptáková, E, Kúdela, J, “Study of the System Wood–Coating Material, Part 2. Wood–Solid Coating Material.” Holzforschung, 56 547–557 (2002)

    Article  Google Scholar 

  6. Jaworek, T, Bankowsky, HH, Koniger, R, Reich, W, Schrof, W, Schwalm, R, “Radiation Curable Materials—Principles and New Perspectives.” Macromol. Symp., 159 197–204 (2000)

    Article  CAS  Google Scholar 

  7. Kim, DJ, Kang, PH, Nho, YC, “Characterization of Mechanical Properties of Gamma Al2O3 Dispersed Epoxy Resin Cured by Gamma-Ray Radiation.” J. Appl. Polym. Sci., 91 (3) 1898–1903 (2004)

    Article  CAS  Google Scholar 

  8. Bauer, F, Mehnert, R, “UV Curable Acrylate Nanocomposites Properties and Applications.” J. Polym. Res., 12 (6) 483–491 (2005)

    Article  CAS  Google Scholar 

  9. Decker, C, Keller, L, Zahouily, K, Benfarhi, S, “Synthesis of Nanocomposite Polymers by UV-Radiation Curing.” Polymer, 46 (17) 6640–6648 (2005)

    Article  CAS  Google Scholar 

  10. Lee, JM, Kim, DS, “Effect of Clay Content on the Ultraviolet-Curing and Physical Properties of Urethane-Acrylate/Clay Nanocomposites.” Polym. Compos., 28 (3) 325–330 (2007)

    Article  CAS  Google Scholar 

  11. Hajas, J, Lenz, P, Schulte, K, “Enhancing Mechanical Properties of UV-Curing Wood Varnishes by Synergistic Combinations of Silicones and Nano-Alumina Particles.” Proc. RadTech Europe Conference and Exhibition, Barcelona, SP, October, 2005

  12. Sangermano, M, Malucelli, G, Amerio, E, Priola, A, Billi, E, Rizza, G, “Photopolymerization of Epoxy Coatings Containing Silica Nanoparticles.” Prog. Org. Coat., 54 (2) 134–138 (2005)

    Article  CAS  Google Scholar 

  13. Amerio, E, Fabbri, P, Malucelli, G, Messori, M, Sangermano, M, Taurino, R, “Scratch Resistance of Nano-Silica Reinforced Acrylic Coatings.” Prog. Org. Coat., 62 (2) 129–133 (2008)

    Article  CAS  Google Scholar 

  14. Fibiger, W, Boyce, AC, Coatings Technology—Book II: Trade Sale and Architectural Coatings, Coatings Technology Program, Fall Edition, Willowdale, 1995

  15. Vu, C, La Ferté, O, Eranian, A, “High Performance UV Multi-Layer Coatings Using Inorganic Nanoparticles.” Proc. RadTech Europe Conference and Exhibition, Barcelona, SP, October, 2005

  16. Evonik Degussa GmbH, Aeroxide Alu C, Product Data Sheet, 2006

  17. Evonik Degussa GmbH, Aerosil R7200, Product Data Sheet, 2004

  18. Quebec Wood Export Bureau (QWEB), www.quebecwoodexport.com, Accessed November 15, 2006

  19. Laoharojanaphand, P, Lin, TJ, Stoffer, JO, “Glow Discharge Polymerization of Reactive Functional Silanes on Poly (methylmethacrylate).” J. Appl. Polym. Sci., 40 369–384 (1990)

    Article  CAS  Google Scholar 

  20. Chen, H, Zhou, S, Gu, G, Wu, L, “Modification and Dispersion of Nanosilica.” J. Dispers. Sci. Technol., 25 (6) 837–848 (2004)

    Article  CAS  Google Scholar 

  21. Zhang, X, Wu, Y, He, S, Yang, D, “Structural Characterization of Sol–Gel Composites Using TEOS/MEMO as Precursors.” Surf. Coat. Technol., 201 6051–6058 (2007)

    Article  CAS  Google Scholar 

  22. Guo, Y, Wang, M, Zhang, H, Liu, G, Zhang, L, Qu, X, “The Surface Modification of Nanosilica, Preparation of Nanosilica/Acrylic Core-Shell Composite Latex and its Application in Toughening PVC Matrix.” J. Appl. Polym. Sci., 107 2671–2680 (2008)

    Article  CAS  Google Scholar 

  23. Bauer, F, Ernst, H, Decker, U, Findeisen, M, Gläsel, HJ, Langguth, H, Hartmann, E, Mehnert, R, Peuker, C, “Preparation of Scratch and Abrasion Resistant Polymeric Nanocomposites by Monomer Grafting onto Nanoparticles, 1—FTIR and Multi-nuclear NMR Spectroscopy to the Characterization of Methacryl Grafting.” Macromol. Chem. Phys., 201 (18) 2654 (2000)

    Article  CAS  Google Scholar 

  24. Siddiquey, IA, Ukaji, E, Furusawa, T, Sato, M, Suzuki, N, “The Effects of Organic Surface Treatment by Methacryloxypropyltrimethoxysilane on the Photostability of TiO2.” Mater. Chem. Phys., 105 162–168 (2007)

    Article  CAS  Google Scholar 

  25. Zhou, S, Wu, L, Xiong, M, He, Q, Chen, G, “Dispersion and UV-VIS Properties of Nanoparticles in Coatings.” J. Dispers. Sci. Technol., 25 (4) 417–433 (2004)

    Article  CAS  Google Scholar 

  26. Kardar, P, Ebrahimi, M, Bastani, S, “Study the Effect of Nano-Alumina Particles on Physical–Mechanical Properties of UV Cured Epoxy Acrylate via Nano-Indentation.” Prog. Org. Coat., 62 321–325 (2008)

    Article  CAS  Google Scholar 

  27. Leder, G, Ladwig, T, Valter, V, Frahn, S, Meyer, J, “In New Effects of Fumed Silica in Modem Coatings.” Prog. Org. Coat., 45 139–144 (2002)

    Article  CAS  Google Scholar 

  28. Lorinczova, I, Decker, C, “Scratch Resistance of UV-Cured Acrylic Clearcoats.” Surf. Coat. Int. B: Coat. Trans., 89 (2) 133–143 (2006)

    Article  Google Scholar 

  29. Pizzi, A, Mittal, KL, Handbook of Adhesive Technology. Dekker, New York, 1994

    Google Scholar 

  30. SpecialChem4Adhesives, www.specialchem4adhesives.com, Accessed May 9, 2006

  31. Hopkins, WG, Evrard, CH, Physiologie Végétale. De Boeck, Bruxelles, 2003

    Google Scholar 

  32. Chen, S, You, B, Zhou, S, Wu, L, “Preparation and Characterization of Scratch and Mar Resistant Waterborne Epoxy/Silica Nanocomposite Clearcoat.” J. Appl. Polym. Sci., 112 3634–3639 (2009)

    Article  CAS  Google Scholar 

  33. Bauer, F, Flyunt, R, Czihal, K, Langguth, H, Mehnert, R, Schubert, R, Buchmeiser, MR, “UV Curing and Matting of Acrylate Coatings Reinforced by Nano-silica and Micro-Corundum Particles.” Prog. Org. Coat., 60 121–126 (2007)

    Article  CAS  Google Scholar 

  34. Zhou, SX, Wu, LM, Sun, J, Shen, WD, “The Change of the Properties of Acrylic-Based Polyurethane via Addition of Nano-Silica.” Prog. Org. Coat., 45 (1) 33–42 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Economic Development Canada, the Fond Québécois de Recherche sur la Nature et les Technologies and FPInnovations for their financial support. We would like to thank Can-Lak our coating partner in this project. Material support from BYK-Chemie and Ciba Specialty Chemicals is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Riedl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sow, C., Riedl, B. & Blanchet, P. UV-waterborne polyurethane-acrylate nanocomposite coatings containing alumina and silica nanoparticles for wood: mechanical, optical, and thermal properties assessment. J Coat Technol Res 8, 211–221 (2011). https://doi.org/10.1007/s11998-010-9298-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-010-9298-6

Keywords

Navigation