Skip to main content
Log in

Structural, optical and electronic properties of Ag–TiO2 nanocomposite thin film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocomposite thin films of Ag nanoparticles in TiO2 matrices were synthesised by RF magnetron co-sputtering and characterised by X-ray diffraction (XRD), Rutherford back scattering (RBS) spectrometry, UV–Vis, high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The composition of Ag was varied from 0 to 45 at.%. The thickness and the concentrations of Ag in the nanocomposite thin film were revealed by RBS. XRD analysis confirmed that the TiO2 matrix is in anatase phase and shows change in phase with Ag concentration. The UV–visible absorption spectroscopy revealed low-intense and broad surface plasmon resonance (SPR) peak at ~500 nm for the thin film with 33 at.% Ag content that was red-shifted to ~525 nm with increasing its intensity for 45 at.% of Ag. The red shift in SPR peak understood by Maxwell–Garnett theory and explained further nonexistence of SPR by interparticle separation from HR-TEM images and crystallinity. This HR-TEM image analysis confirmed the formation of Ag nanoparticles, and average radii were ~5, 12, 15 nm. The Tauc plot reveals reduction in band gap from 3.05 to 2.25 eV with increase in Ag content. Above results are understood based on the XPS analysis which shows a strong interaction between the Ag nanoparticle and TiO2. This decrease in band gap was advantageous to enhance the properties like photocatalytic and bioactivities through SPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Noguez, J. Phys. Chem. C 111, 3606 (2007)

    Article  Google Scholar 

  2. A. Patel, P. Prajapati, R. Boghra, Asian J. Pharm. Sci. Clin. Res. 1, 40 (2011)

    Google Scholar 

  3. A.D. McFarland, R.P. Van Duyne, Nano Lett. 3, 1057 (2003)

    Article  ADS  Google Scholar 

  4. Y.K. Mishra, S. Mohapatra, R. Singhal, D.K. Avasthi, D.C. Agarwal, S.B. Ogale, Appl. Phys. Lett. 92, 043107 (2008)

    Article  ADS  Google Scholar 

  5. M. Epifani, C. Giannini, L. Tapfer, L. Vasanelli, J. Am. Ceram. Soc. 83, 2385–2393 (2000)

    Article  Google Scholar 

  6. M. Lambert, A. May, C.K. Akkan, N. Agarwal, O.C. Aktas, Mater. Lett. 137, 405–408 (2014)

    Article  Google Scholar 

  7. R. Singhal, D.C. Agarwal, Y.K. Mishra, D. Kabiraj, G. Mattei, J.C. Pivin, R. Chandra, D.K. Avasthi, J. Appl. Phys. 107, 103504 (2010)

    Article  ADS  Google Scholar 

  8. E. Hariprasad, T.P. Radhakrishnan, Langmuir 29, 13050 (2013)

    Article  Google Scholar 

  9. S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56, 1639 (2011)

    Article  Google Scholar 

  10. Y. Yang, C. Flatebo, J. Liang, P. Dong, J. Yuan, T. Wang, J. Zhang, W. Chen, J. Wu, P.M. Ajayan, L. Ci, Q. Li, J. Lou, Appl. Mater. Today 3, 57 (2016)

    Article  Google Scholar 

  11. D. Rathee, S.K. Arya, M. Kumar, Front. Optoelectron. China 4, 349 (2011)

    Article  Google Scholar 

  12. C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, Ceram. Int. 34, 1067 (2008)

    Article  Google Scholar 

  13. B.S. Richards, Sol. Energy Mater. Sol. Cells 79, 369 (2003)

    Article  Google Scholar 

  14. C. He, Y. Yu, X. Hu, A. Larbot, Appl. Surf. Sci. 200, 239 (2002)

    Article  ADS  Google Scholar 

  15. K.B. Mogensen, K. Kneipp, J. Phys. Chem. C 118, 28075 (2014)

    Article  Google Scholar 

  16. L.R. Doolittle, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 9, 344 (1985)

    Article  ADS  Google Scholar 

  17. T. Degen, M. Sadki, E. Bron, U. König, G. Nénert, Powder Diffr. 29, S13 (2014)

    Article  ADS  Google Scholar 

  18. H. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073 (1998)

    Article  Google Scholar 

  19. S.K. Ghosh, T. Pal, Chem. Rev. 107, 4797 (2007)

    Article  Google Scholar 

  20. K.M. Mayer, J.H. Hafner, Chem. Rev. 111, 3828 (2011)

    Article  Google Scholar 

  21. M.J. Alam, D.C. Cameron, J. Sol Gel Sci. Technol. 25, 137–145 (2002)

    Article  Google Scholar 

  22. J. Zuo, Appl. Surf. Sci. 256, 7096 (2010)

    Article  ADS  Google Scholar 

  23. K. Gupta, R.P. Singh, A. Pandey, A. Pandey, Beilstein J. Nanotechnol. 4, 345 (2013)

    Article  Google Scholar 

  24. C. Su, L. Liu, M. Zhang, Y. Zhang, C. Shao, CrystEngComm 14, 3989 (2012)

    Article  Google Scholar 

  25. H.W. Chen, Y. Ku, Y.L. Kuo, Chem. Eng. Technol. 30, 1242 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported under the Project (UFR-54302) by IUAC New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himanshu Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H., Singhal, R., Siva Kumar, V.V. et al. Structural, optical and electronic properties of Ag–TiO2 nanocomposite thin film. Appl. Phys. A 122, 1010 (2016). https://doi.org/10.1007/s00339-016-0552-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0552-3

Keywords

Navigation