Skip to main content
Log in

Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties

  • Research Article
  • Published:
Frontiers of Optoelectronics in China Aims and scope Submit manuscript

Abstract

Metal oxide semiconductor (MOS) device down-scaling is a powerful driving force for the evolution of microelectronics. The downsizing rate of metal oxide semiconductor field effect transistors (MOSFETs) is really marvelous. Silicon dioxide (SiO2) has served as a perfect gate dielectric for the last four decades. Due to physical limitations, leakage current, high interface trap charge it now needs to be replaced with higher permittivity dielectric material. Keeping the motivation for the search of high-k materials, extensive studies have been carried out on several metal oxides, such as ZrO2, Ta2O5, TiO2, Al2O3 and HfO2 for the replacement of SiO2. The high dielectric constant (k) of titanium dioxide (TiO2) will open multifaceted prospects for the use of this material in microelectronic devices. In this paper, a comparative study of various deposition methods for fabrication of thin TiO2 films has been presented. This work uses a combination of simulation results, experimental data and critical analysis of published data. Further, an experiment using sol-gel method has been carried out to deposit thin films of TiO2. It has been characterized and compared with the earlier reported fabrication methods. The X-ray diffraction analyses and Raman spectra indicate the presence of anatase TiO2 phase in the film. The dielectric constant as calculated using capacitance-voltage (C-V) analysis was found to be 23. The refractive index of the film was 2.43. The TiO2 films studied for microelectronic applications and present acceptable properties such as low leakage current density of 1.0×10−5 A/cm at 1 V and band gap of 3.6 eV. The leakage current has been found to be dominant by the Schottky emission at lower electric field, while Flower-Nordheim (F-N) tunneling occurs at higher biasing voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borkowska A, Domaradzki J, Kaczmarek D. Characterization of TiO2 and TiO2-HfO2 transparent thin films for microelectronics applications. In: 2006 International students and Young Scientist Workshop, Photonic and Microsystems. 2006: 5–8

  2. Masuda Y, Jinbo Y, Yonzawa T, Koumoto K. Templeted site selective deposition of Titanium dioxide and self assembled monolayer. Chemistry of Materials, 2002, 14(3): 1236–1241

    Article  Google Scholar 

  3. Fuyuki T, Matsunami H. Electronic properties of the interface between Si and TiO2 deposited at very low temperatures. Japanese Journal of Applied Physics, 1986, 25(9): 1288–1291

    Article  Google Scholar 

  4. Su C, Hong B Y, Tseng CM. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3): 119–126

    Article  Google Scholar 

  5. Wong H, Iwai H. On the scaling issues and high-κ replacement of ultrathin gate dielectrics for nanoscale MOS transistors. Microelectronic Engineering, 2006, 83(10): 1867–1904

    Article  Google Scholar 

  6. Gan J Y, Chang Y C, Wu T B. Dielectric property of (TiO2)x-(Ta2O5)1−x thin films. Applied Physics Letters, 1998, 72(3): 332

    Article  Google Scholar 

  7. Westlinder J. Investigation of novel metal gate and high-k dielectric materials for CMOS technologies. PhD Thesis Uppsala: Acta Universitatis Upsaliensis, 2004: 8–72 www.uu.diva-portal.org/smash/get/diva2:165233/FULLTEXT01

  8. Zhang L, Mu JM. Nanomaterial and Nanostructure. Bejing: Science Press, 2001

    Google Scholar 

  9. Kostlin H, Frank G, Hebbinghaus G, Auding H, Denissen K. Optical filters on linear halogen-lamps prepared by dip-coating. Journal of Non-Crystalline Solids, 1997, 218: 347–353

    Article  Google Scholar 

  10. Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97: 2373–2420

    Article  Google Scholar 

  11. Pomoni K, Vomvas A, Trapalis C. Transient photoconductivity of nanocrystalline TiO2 sol-gel thin films. Thin Solid Films, 2005, 479(1–2): 160–165

    Article  Google Scholar 

  12. ITRS 2003, Edition, Semiconductor Industry Association (SIA), Austin, SEMATECH USA, 2706 from: www.itrs.net/links/2003

  13. Kurakula S R. Studies on the electrical properties of titanium dioxide thin film dielectrics for microelectronic applications. Dissertation for the Master’s Degree. Indian Institute of Science, 2007: 1–45

  14. Gusev E P, Cartier E, Buchanan D A, Gribelyuk M, Copel M, Okorn-Schmidt H, D’Emic C. Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues. Microelectronic Engineering, 2001, 59(1–4): 341–349

    Article  Google Scholar 

  15. Löbl P, Huppertz M, Mergel D. Nucleation and growth in TiO2 films prepared by sputtering and evaporation. Thin Solid Films, 1994, 251 (1): 72–79

    Article  Google Scholar 

  16. Georgia J, Armynov S, Volva E, Oulios I P, Sotiropoulos S. Preparation and photoelectrochemical characterisation of electro-synthesised titanium dioxide deposits on stainless steel substrates. Electrochimica Acta, 2006, 51(10): 2076–2087

    Article  Google Scholar 

  17. Battiston G A, Gerbai R, Porchia M, Margio A. Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD. Thin Solid Films, 1994, 239(2): 186–191

    Article  Google Scholar 

  18. Löbl H P, Huppertz M, Mergel D. ITO films for antireflective and antistatic tube coatings prepared by direct current magnetron sputtering. Surface and Coatings Technology, 1996, 82(1–2): 90–98

    Article  Google Scholar 

  19. Meng L J, dos Santos M P. Investigations of titanium oxide films deposited by direct current reactive magnetron sputtering in different sputtering pressures. Thin Solid Films, 1993, 226(1): 22–29

    Article  Google Scholar 

  20. Martin N, Rousselt C, Savll C, Palmino F. Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films, 1996, 287(1–2): 154–163

    Article  Google Scholar 

  21. Fernandez L A, Espinos J P, Belderrain T R, Gonzalez-Elipe A R. Ion beam induced chemical vapor deposition procedure for the preparation of oxide thin films. II. Preparation and characterization of AlxTiyOz thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films, 1996, 14(5): 2842–2848

    Article  Google Scholar 

  22. Liu H M, Yang W S, Ma Y, Cao Y A, Yao J N, Zhang J, Hu T D. Synthesis and characterization of titania prepared by using a photoassisted Sol-Gel method. Langmuir, 2003, 19(7): 3001–3005

    Article  Google Scholar 

  23. Chowdhury P, Barshilia Harish C, Selvakumar N, Deepthi B, Rajam K S, Chaudhuri A R, Krupanidhi S B. The structural and electrical properties of TiO2 thin films prepared by thermal oxidation. Physica B, Condensed Matter, 2008, 403(19–20): 3718–3723

    Article  Google Scholar 

  24. Hitchman M L, Tian F. Studies of TiO2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol. Journal of Electroanalytical Chemistry, 2002, 538-539: 165–172

    Article  Google Scholar 

  25. Kaliwoh N, Zhang J Y, Boyd I W. Characterisation of TiO2 deposited by photo-induced chemical vapour deposition. Applied Surface Science, 2002, 186(1–4): 241–245

    Article  Google Scholar 

  26. Babelon P, Dequiedt A S, Mostéfa-Sba H, Bourgeois S, Sibillot P, Sacilotti M. SEM and XPS studies of titanium dioxide thin films grown by MOCVD. Thin Solid Films, 1998, 322(1–2): 63–67

    Article  Google Scholar 

  27. Chakraborty S, Bera M K, Bhattachary S, Maiti C K. Current conduction mechanism in TiO2 gate dielectrics. Microelectronic Engineering, 2005, 81: 188–193

    Article  Google Scholar 

  28. Chong L H, Malik K, de Groot C H, Kersting R. The structural and electrical properties of thermally grown TiO2 thin films. Journal of Physics Condensed Matter, 2006, 18(2): 645

    Article  Google Scholar 

  29. Sze S M. Physics of Semiconductor Devices. New York: Wiley-Interscience, 1969, 496

    Google Scholar 

  30. Dalapati G K, Chatteraje S, Shrama S K, Nandi S K, Bose P K, Varma S, Patil S, Maiti C K. Electrical properties of ultrathin TiO2 films on Si1−yCy heterolayers. Solid-State Electronics, 2003, 47(10): 1793–1798

    Article  Google Scholar 

  31. Zhang X W, Han G R. Microporous textured titanium dioxide films deposited at atmospheric pressure using dielectric barrier discharge assisted chemical vapor deposition. Thin Solid Films, 2008, 516 (18): 6140–6144

    Article  Google Scholar 

  32. Ivan H, Pullmannov A, Martin P, Juraj H, Kups T, Spiess L. Communications structural and morphological investigations of TiO2 sputtered thin films. Communications, 2009, 60(6): 354–357

    Google Scholar 

  33. Bendavid A, Martin P J, Takikawa H. Deposition and modification of titanium dioxide thin films by filtered arc deposition. Thin Solid Films, 2000, 360(1–2): 241–249

    Article  Google Scholar 

  34. Ohsaka T, Izumi F, Fujiki Y. Raman spectrum of anatase, TiO2. Journal of Raman Spectroscopy, 1978, 7(6): 321–324

    Article  Google Scholar 

  35. Vigil E, Saadoun L, Ayllón J A, Domènechc X, Zumetaa I, Rodríguez-Clemente R. TiO2 thin film deposition from solution using microwave heating. Thin Solid Films, 2000, 365(1): 12–18

    Article  Google Scholar 

  36. Rathee D, Kumar M, Arya S K. CMOS Development optimization, scaling issue and replacement with high-k material for future microelectronics. International Journal of Computer Application, 2010, 8(5): 10–17

    Article  Google Scholar 

  37. Zhang H Z, Banfield J F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. Journal of Physical Chemistry B, 2000, 104(15): 3481–3487

    Article  Google Scholar 

  38. Rathee D S, Sharma R, Pandey M. The Roadmap for CMOS scaling and optoelectronics devices. In: Proceedings of National Conference ITM. 2007, 82–87

  39. Jang H D, Kim S K, Kim S J. Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. Journal of Nanoparticle Research, 2001, 3(2–3): 141–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davinder Rathee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathee, D., Arya, S.K. & Kumar, M. Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties. Front. Optoelectron. China 4, 349–358 (2011). https://doi.org/10.1007/s12200-011-0188-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-011-0188-z

Keywords

Navigation