Skip to main content
Log in

Conduction mechanism and dielectric properties of a Se80Ge20−x Cd x (x = 0, 6 and 12 at.wt%) films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

AC conductivity and dielectric properties of Se80Ge20−x Cd x (0 ≤ x ≤ 12 at.wt%) in thin film forms are reported in this paper. Thin films were deposited from the prepared compositions by thermal evaporation technique at 10−5 Torr. The films were well characterized by X-ray diffraction, differential thermal analysis and energy-dispersive X-ray spectroscopy. The AC conductivity and dielectric properties have been investigated for the studied films in the temperature range 293–393 K and over a frequency range of 102–105 Hz. The experimental results indicate that both AC conductivity σ AC(ω) and dielectric constants depend on temperature, frequency and Cd content. The frequency exponent s was calculated, and its value lies very close to unity and is temperature independent. This behavior can be explained in terms of the correlated barrier hopping between centers forming intimate valence alternation pairs. The density of localized states N(E F) at the Fermi level is estimated. The activation energy ΔE(ω) was found to decrease with increasing frequency. The maximum barrier height W m for the studied films was calculated from an analysis of the dielectric loss ε 2 according to the Guintini equation. Its values agree with that proposed by the theory of hopping of charge carriers over potential barrier as suggested by Elliott for chalcogenide glasses. The variation of the studied properties with Cd content was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. V.K. Deepika, P.K. Saraswat, N.S. Jain, K. Saxena, T.P. Sharma, S.K. Sharma, Dhawan. AIPPROC 1004, 85 (2008)

    Google Scholar 

  2. A.A. Abd-Elnaem, K.A. Aly, N. Afify, A.M. Aonsehlly, J. Alloys Compd. 491, 85 (2010)

    Article  Google Scholar 

  3. T. Galstyan, J. Viens, A. Villeneuve, K. Richardson, M. Duguay, J. Lightwave Technol. 15, 1343 (1997)

    Article  ADS  Google Scholar 

  4. H.Y. Hwang, G. Lenz, M.E. Lines, and R.E. Slusher, U.S. Patent No. 6,208,792 27 March 9 2001

  5. D. Hewak, Progress Towards A 1300 nm Fiber Amplifier, The Institution of Electrical Engineers, Savoy Place, London WCPR OBL, UK (1998)

  6. Y. Vlasov, Y. Ermolenko, A. Legin, Y. Murzina, J. Anal. Chem. USSR 54, 476 (1999)

    Google Scholar 

  7. P. Nermec, M. Frumar, B. Frumarova, M. Jelinek, J. Lancok, J. Jedelsky, Opt. Mater. 15, 191 (2000)

    Article  ADS  Google Scholar 

  8. P. Nermec, M. Frumar, J. Jedelsky, M. Jelinek, J. Lancok, I. Gregora, J. Non-Cryst. Solids 299–302, 1013 (2000)

    Google Scholar 

  9. S. Tolansky, Multiple Beam Interferometry of Surface and Films (Oxford University Press, London, New York, 1984), p. 147

    Google Scholar 

  10. S.R. Elliott, Phill. Mag. B 37, 553 (1978)

    Article  ADS  Google Scholar 

  11. S.R. Elliott, J. Non Cry. Solids 35–36, 855 (1980)

    Article  Google Scholar 

  12. N.F. Mott, E.A. Davis, R.A. Streel, Phill. Mag. 32, 961 (1975)

    Article  ADS  Google Scholar 

  13. M. Pollak, T.H. Geballe, Phys. Rev. 22, 1742 (1961)

    Article  ADS  Google Scholar 

  14. N. Mehta, S.K. Arrahari, A. Kumar, Mater. Lett. 61, 837 (2007)

    Article  Google Scholar 

  15. P. Agarwal, S. Goel, J.S.P. Rai, A. Kumar, Phys. Stat. Sol. A 127, 363 (1991)

    Article  ADS  Google Scholar 

  16. M. Pollak, G.E. Pike, Phys. Rev. Lett. 28, 1449 (1972)

    Article  ADS  Google Scholar 

  17. A.C. Warren, J.C. Male, Electron. Lett. 6, 567 (1970)

    Article  Google Scholar 

  18. M.H. Cohen, H. Fritzsche, S. Ovshinsky, Phys. Rev. Lett. 22, 1065 (1969)

    Article  ADS  Google Scholar 

  19. S.R. Elliott, Philos. Mag. B 36, 1291 (1978)

    Article  ADS  Google Scholar 

  20. S.R. Elliott, Philos. Mag. B 37, 135 (1978)

    Article  Google Scholar 

  21. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  22. M. Kastener, H. Fritzsche, Philos. Mag. B 37, 199 (1978)

    Article  ADS  Google Scholar 

  23. M. Kastener, Proceedings of the 7th International Conference of Amorphous and Liquid Semiconductors, 1977, p. 504

  24. S.R. Elliott, Solid State Commun. 27, 749 (1978)

    Article  ADS  Google Scholar 

  25. C. Angell, Ann. Rev. Phys. Chem. 43, 693 (1992)

    Article  ADS  Google Scholar 

  26. A.E. Streen, H. Eyring, J. Chem. Phys. 5, 113 (1937)

    Article  ADS  Google Scholar 

  27. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Enolie, P. Houenou, J. Non-Cryst. Solids 45, 57 (1981)

    Article  ADS  Google Scholar 

  28. S.C. Agarawal, S. Guha, K.L. Narasimhan, J. Non-Cryst. Solids 18, 429 (1975)

    Article  ADS  Google Scholar 

  29. S. Asokan, M.M.V. Prassad, G. Parathasarathy, E.S.R. Gopal, Phys. Rev. Lett. 62, 808 (1989)

    Article  ADS  Google Scholar 

  30. S.R. Elliott, Phil. Mag. B 37, 553 (1978)

    Article  ADS  Google Scholar 

  31. H.E. Atyia, Vacuum 81, 590 (2007)

    Article  ADS  Google Scholar 

  32. A. Sharma, N. Mehta, A. Kumar, J. Alloys Compd. 509, 3468 (2011)

    Article  Google Scholar 

  33. S.R. Lukic, S.J. Skuban, F. Skuban, D.M. Petrovic, A.S. Tveryanovich, Phys. B 403, 2578 (2008)

    Article  ADS  Google Scholar 

  34. M.M.V. Asokan, G. Prassad, E.S.R. Parathasarathy, Gopal. Phys. Rev. Lett. 62, 808 (1989)

    Article  ADS  Google Scholar 

  35. N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, J. Alloys Compd. 477, 925 (2009)

    Article  Google Scholar 

  36. J.M. Stevels, Handbuch der Physik, ed. by Flugge (Springer, Berlin, 1957) p. 350

  37. S. Glasstone, K.J. Laidler, H. Eyring, The theory of rate processes (McGraw Hill, New York, 1941), p. 544

    Google Scholar 

  38. P. Pollak, G.E. Pike, Phys. Rev. Lett. 25, 1449 (1972)

    Article  ADS  Google Scholar 

  39. ShA Mansoura, I.S. Yahia, G.B. Sakr, Solid State Commun. 150, 1386 (2010)

    Article  ADS  Google Scholar 

  40. N.A. Hegab, M.A. Afifi, H.E. Atyia, M.I. Ismael, Acta Phys. Pol. A 119, 416 (2011)

    Article  Google Scholar 

  41. S. Kumar, M. Husain, M. Zulferquar, Phys. B 387, 400 (2007)

    Article  ADS  Google Scholar 

  42. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Shakra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakra, A.M., Farid, A.S., Hegab, N.A. et al. Conduction mechanism and dielectric properties of a Se80Ge20−x Cd x (x = 0, 6 and 12 at.wt%) films. Appl. Phys. A 122, 852 (2016). https://doi.org/10.1007/s00339-016-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0375-2

Keywords

Navigation