Skip to main content
Log in

Phase constituents and magnetic properties of the CoFe2O4 nanoparticles prepared by polyvinylpyrrolidone (PVP)-assisted hydrothermal route

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, nanoparticles of cobalt ferrite were synthesized by a simple hydrothermal process at 190 °C using different treatment durations with the assistance of polyvinylpyrrolidone (PVP) surfactant. The synthesized powders were characterized using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscope and vibration sample magnetometer techniques. The quantitative values of phase constituents and also inversion parameter of cobalt ferrite spinel structure were calculated by Rietveld method using XRD results. XRD results show formation of cobalt ferrite as the main phase in all samples and also the presence of small amounts of Co3O4 lateral phase in some cases. Raman spectroscopies also confirm the presence of this lateral phase. Microstructural studies represent formation of nanoparticles with a narrow particle size distribution. Magnetic measurements represent that maximum magnetization (M max) values are in the range of 25–57 emu/g with changes in the hydrothermal treatment duration. Intrinsic coercivity force values ( i H c ) change from 0 to 487 Oe in different samples. The highest M max value of 57 emu/g was obtained in the sample after 3 h of hydrothermal treatment with PVP addition. The i H c value of this sample was 35 Oe, while without PVP addition, the high M max value of 60 emu/g is observed in a sample that has i H c value equal to 320 Oe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.B. Ji, S.L. Tang, S.K. Ren, F.M. Zhang, B.X. Gu, Y.W. Du, J. Cryst. Growth 270, 156 (2004)

    Article  ADS  Google Scholar 

  2. Z. Chen, L. Gao, Mater. Sci. Eng. B 141, 82 (2007)

    Article  MathSciNet  Google Scholar 

  3. Q. Song, Z. Zhang, J. Am. Chem. Soc. 126, 6164 (2004)

    Article  Google Scholar 

  4. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606 (2009)

    Article  Google Scholar 

  5. L. Zhang, J. Lian, L. Wang, J. Jiang, Z. Duan, L. Zhao, Chem. Eng. J. 241, 384 (2014)

    Article  Google Scholar 

  6. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011)

    Article  ADS  Google Scholar 

  7. Y.X. Zhang, X.D. Hao, Z.P. Diao, J. Li, Y.M. Guan, Mater. Lett. 123, 229 (2014)

    Article  Google Scholar 

  8. M. Sincai, D. Gângă, D. Bica, L. Vékás, J. Magn. Magn. Mater. 225, 235 (2001)

    Article  ADS  Google Scholar 

  9. K. Raj, B. Moskowitz, R. Casciari, J. Magn. Magn. Mater. 149, 174 (1995)

    Article  ADS  Google Scholar 

  10. C.V.G. Reddy, S.V. Manorama, V.J. Rao, J. Mater. Sci. Lett. 19, 775 (2000)

    Article  Google Scholar 

  11. L.J. Cote, A.S. Teja, A.P. Wilkinson, Z.J. Zhang, Fluid Phase Equilibr. 210, 307 (2003)

    Article  Google Scholar 

  12. S. Jovanovic, M. Spreitzer, M. Otonicar, J.H. Jeon, D. Suvorov, J. Alloys Compd. 589, 271 (2014)

    Article  Google Scholar 

  13. D.L. Leslie-Pelecky, R.D. Rieke, Chem. Mater. 8, 1770 (1996)

    Article  Google Scholar 

  14. I.V. Vasylenko, K.S. Gavrilenko, I.E. Kotenko, O. Cador, L. Ouahab, V.V. Pavlishchuk, Theor. Exp. Chem. 50, 226 (2014)

    Article  Google Scholar 

  15. D. Peddis, C. Cannas, A. Musinu, A. Ardu, F. Orrù, D. Fiorani, S. Laureti, D. Rinaldi, G. Muscas, G. Concas, G. Piccaluga, Chem. Mater. 25, 2005 (2013)

    Article  Google Scholar 

  16. K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007)

    Article  Google Scholar 

  17. C. Xu, Y. Wang, H. Chen, D. Nie, Y. Liu, Mater. Lett. 136, 175 (2014)

    Article  Google Scholar 

  18. W. Yu, J. Wang, Z. Gou, W. Zeng, W. Guo, L. Lin, Ceram. Int. 39, 2639 (2013)

    Article  Google Scholar 

  19. M.R. Parra, F.Z. Haque, Optik 125, 4629 (2014)

    Article  ADS  Google Scholar 

  20. B.Y. Zaslavsky, L.M. Miheeva, M.N. Rodnikova, G.V. Spivak, V.S. Harkin, A.U. Mahmudov, J. Chem. Soc. 85, 2857 (1989)

    Google Scholar 

  21. J. Tothova, V. Lisy, e-Polymers 022 (2013)

  22. L.J. Zhao, Q. Jiang, Mater. Lett. 64, 677 (2010)

    Article  Google Scholar 

  23. L. Zhao, H. Zhang, L. Zhou, Y. Xing, S. Song, Y. Lei, Chem. Commun. 30, 3570 (2008)

    Article  Google Scholar 

  24. W. Dan, Y. Ping, C. Xin, Nanosci. Nanotechnol. Lett. 7, 358 (2015)

    Article  Google Scholar 

  25. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  Google Scholar 

  26. G.K. Williamson, W.H. Hall, Acta Mater. 1, 22 (1953)

    Article  Google Scholar 

  27. D. Zhao, X. Wu, H. Guan, E. Han, J. Supercrit. Fluids 42, 226 (2007)

    Article  Google Scholar 

  28. H. Yüzer, M. Kara, E. Sabah, M.S. Çelik, J. Hazard. Mater. 151, 33 (2008)

    Article  Google Scholar 

  29. A.V. Sarode, A.C. Kumbharkhane, Polym. Int. 61, 609 (2012)

    Article  Google Scholar 

  30. T. Adschiri, Y. Hakuta, K. Arai, Ind. Eng. Chem. Res. 39, 4901 (2000)

    Article  Google Scholar 

  31. S. Chuangchote, T. Sagawa, S. Yoshikawa, J. Appl. Polym. Sci. 114, 2777 (2009)

    Article  Google Scholar 

  32. D.R. Lide, CRC Handbook of Chemistry and Physics, 83rd edn. (CRC Press, USA, 2002–2003)

  33. S. Yin, M. Sato, T. Shinozaki, J. Luminescence 126, 427 (2007)

    Article  ADS  Google Scholar 

  34. R.R. Shahraki, M. Ebrahimi, S.A.S. Ebrahimi, S.M. Masoudpanah, J. Magn. Magn. Mater. 324, 3762 (2012)

    Article  ADS  Google Scholar 

  35. M.B. Mohamed, M. Yehia, J. Alloys Compd. 615, 181 (2014)

    Article  Google Scholar 

  36. X.P. Shen, H.J. Miao, H. Zhao, Z. Xu, Appl. Phys. A 91, 47 (2008)

    Article  ADS  Google Scholar 

  37. M. Salavati-Niasari, A. Khansari, C. R. Chimie. 17, 352 (2014)

    Article  Google Scholar 

  38. B.G. Toksha, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Solid State Commun. 147, 479 (2008)

    Article  ADS  Google Scholar 

  39. D. Peddis, N. Yaacoub, M. Ferretti, A. Martinelli, G. Piccaluga, A. Musinu, C. Cannas, G. Navarra, J.M. Greneche, D. Fiorani, J. Phys.: Condens. Matter 23, 426004 (2011)

    ADS  Google Scholar 

  40. U. Kurtan, R. Topkaya, A. Baykal, M.S. Toprak, Ceram. Int. 39, 6551 (2013)

    Article  Google Scholar 

  41. L. Kumar, M. Kar, Ceram. Int. 38, 4771 (2012)

    Article  Google Scholar 

  42. R.H. Kodama, A.E. Berkowitz, Phys. Rev. Lett. 77, 394 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mirkazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jalalian, M., Mirkazemi, S.M. & Alamolhoda, S. Phase constituents and magnetic properties of the CoFe2O4 nanoparticles prepared by polyvinylpyrrolidone (PVP)-assisted hydrothermal route. Appl. Phys. A 122, 835 (2016). https://doi.org/10.1007/s00339-016-0350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0350-y

Keywords

Navigation