Skip to main content

Advertisement

Log in

Effect of Bi2O3 particle sizes and addition of starch into Bi2O3–PVA composites for X-ray shielding

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of Bi2O3 particle sizes filled PVA composites on X-ray transmission for X-ray shielding purpose had been successfully fabricated and analyzed by using X-ray fluorescent spectroscopy (XRF) and mammography units with various low X-ray energy ranges. Besides, a preliminary investigation was carried out by using XRF unit to obtain the effect of starch addition into the composite on the X-ray transmissions by both particle sizes of Bi2O3–PVA composites. The results showed that the ability of the composite to attenuate the initial X-ray beam was augmented with the increased Bi2O3 weight percentage (wt%). The density of both particle sizes of Bi2O3–PVA composites was compared with the addition of 1 and 3 wt% starch, while a fluctuation of density occurred for the composites without starch. Moreover, the nano-sized Bi2O3–PVA composite without starch did not exemplify better X-ray attenuation capability compared to its micro-sized counterpart even though their density was higher than the micro-sized Bi2O3–PVA composite. However, the nano-sized Bi2O3–PVA composite with starch offered better particle size effect for X-ray shielding ability than its micro-sized counterpart compared to the Bi2O3–PVA composites without starch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Chang, Y. Zhang, J. Liu, J. Fang, W. Luan, X. Yang, W. Zhang, Nucl. Instrum. Methods Phys. Res. B 356, 88–93 (2015)

    Article  ADS  Google Scholar 

  2. N.Z. Noor Azman, S.A. Siddiqui, M. Ionescu, I.M. Low, Radiat. Phys. Chem. 85, 102–106 (2012)

    Article  ADS  Google Scholar 

  3. N.Z. Noor Azman, S.A. Siddiqui, R. Hart, I.M. Low, Appl. Radiat. Isot. 71, 62–67 (2013)

    Article  Google Scholar 

  4. K. Yoonkwan, P. Seongeun, S. Yongsok, Ind. Eng. Chem. Res. 54, 5968–5973 (2015)

    Article  Google Scholar 

  5. Lead X-ray glass vs. lead plastic acrylic (2013), viewed 15 March 2015. http://www.marshield.com/nuclear-shielding/leaded-x-ray-shielding-glass-and-acrylic

  6. N.Z. Noor Azman, S.A. Siddiqui, I.M. Low, Appl. Phys. A 110, 137–144 (2013)

    Article  ADS  Google Scholar 

  7. P. Jia, C. Bo, Y. Zhou, J. For. Prod. Ind. 3, 151–153 (2014)

    Google Scholar 

  8. J. Jordan, I.J. Karl, T. Rina, A.S. Mohammed, J. Iwona, Mater. Sci. Eng. 393, 1–11 (2005)

    Article  Google Scholar 

  9. A.R. Rahmat, W.A. Wan Abdul Rahman, S.L. Tin, A.A. Yussuf, Mater. Sci. Eng. C 29, 2370–2377 (2009)

    Article  Google Scholar 

  10. T. Tang, D.F. Sergio, Int. J. Eng. Sci. 90, 76–85 (2015)

    Article  Google Scholar 

  11. M.Z. Botelho, R. Künzel, E. Okuno, R.S. Levenhagen, T. Basegio, C.P. Bergmann, Appl. Radiat. Isot. 69, 527–530 (2010)

    Article  Google Scholar 

  12. R. Künzel, E. Okuno, Appl. Radiat. Isot. 70, 781–784 (2012)

    Article  Google Scholar 

  13. K. Singh, K. Sandeeo, R.S. Kaundal, Radiat. Phys. Chem. 96, 153–157 (2014)

    Article  ADS  Google Scholar 

  14. M. Ghaffari-Moghaddam, H. Eslahi, Arabian J. Chem. 7, 846–855 (2014)

    Article  Google Scholar 

  15. X. Tang, S. Alavi, Carbohydr. Polym. 85, 7–16 (2011)

    Article  Google Scholar 

  16. P. Jia, C. Bo, L. Hu, Y. Zhou, J. For. Products Ind. 3, 151–153 (2014)

    Google Scholar 

  17. M.H. El-Rafie, M.E. El-Naggar, M.A. Ramadan, M.M.G. Fouda, S.S. Al-Deyab, A. Hebeish, Carbohydr. Polym. 86, 630–635 (2011)

    Article  Google Scholar 

  18. S.K. Batabyal, C. Basu, A.R. Das, G.S. Sanyal, J. Biobased Mater. Bioenergy 1, 143–147 (2007)

    Google Scholar 

  19. A. Bendaoud, Y. Chalamet, Eur. Polym. J. 63, 237–246 (2015)

    Article  Google Scholar 

  20. N. Othman, N.A. Azahari, H. Ismail, Malays. Polym. J. 6, 147–154 (2011)

    Google Scholar 

  21. H.A. Maghrabi, A. Vijayan, P. Deb, L. Wang, Text. Res. J. 86, 649–658 (2016)

    Article  Google Scholar 

  22. S. Nambiar, E. Osei, E.J. Yeow, Med. Phys. 38, 3720 (2011)

    Article  Google Scholar 

  23. S. Nambiar, E. Osei, E.J. Yeow, J. Appl. Polym. Sci. 127, 4939–4946 (2013)

    Article  Google Scholar 

  24. K.M. Singh, K. Baljit, S.S. Gurdeep, K. Ajay, Radiat. Phys. Chem. 87, 16–25 (2013)

    Article  Google Scholar 

  25. Z. Hejri, A. Ahmadpour, A.A. Seifkordi, S.M. Zebarjad, Int. J. Nanosci. Nanotechnol. 8, 215–226 (2012)

    Google Scholar 

  26. P. Sprawls, The Physical Principles of Medical Imaging, 2nd edn. (Aspen Publishers, Gaithersburg, 1993)

    Google Scholar 

  27. E.E. Belgin, G.A. Aycik, A. Kalemtas, A. Pelit, D.A. Dilek, M.T. Kavak, Radiat. Phys. Chem. 115, 43–48 (2015)

    Article  ADS  Google Scholar 

  28. A.A. Plionis, S.R. Garcia, E.R. Gonzales, D.R. Porterfiled, D.S. Peterson, J. Radioanal. Nucl. Chem. 282, 239–242 (2009)

    Article  Google Scholar 

  29. C.B. Emrullahoğlu Abi, T. Yanar, Mach. Technol. Mater. 12/2013 7–11 (2013)

  30. J.T. Bushberg, J.M. Boone, The Essential Physics of Medical Imaging (Lippincott Williams & Wilkins, Philadelphia, 2012)

  31. L. Mao, I. Syed, G. Sherald, C. Patrizia, C. Emo, J. Polym. Environ. 8, 205–211 (2000)

    Article  Google Scholar 

  32. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigi, Prog. Nucl. Energy 52, 620–623 (2010)

    Article  Google Scholar 

  33. J. Virkutyte, R.S. Varma, Chem. Sci. 2, 837–846 (2011)

    Article  Google Scholar 

  34. R. Nikroo, I. Alemzadeh, M. Vossoughi, K. Haddadian, Water Sci. Technol. 73, 935–946 (2016)

    Google Scholar 

  35. M.H. El-Rafie, H.B. Ahmed, M.K. Zahran, Int. Sch. Res. Not. 2014, 1–12 (2014)

    Google Scholar 

Download references

Acknowledgments

The collection of X-ray transmission data for mammography unit was done at Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200 Pulau Pinang, Malaysia. We also thank Mr Mohd Anas Ahmad from Nano-Optoelectronics Research and Technology Laboratory (N.O.R), School of Physics, Universiti Sains Malaysia, Penang, 11900, Malaysia, for assistance with SEM images. This work was funded under Short-Term Research Grant, Universiti Sains Malaysia, Malaysia (304/PFIZIK/6313249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Z. Noor Azman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noor Azman, N.Z., Musa, N.F.L., Nik Ab Razak, N.N.A. et al. Effect of Bi2O3 particle sizes and addition of starch into Bi2O3–PVA composites for X-ray shielding. Appl. Phys. A 122, 818 (2016). https://doi.org/10.1007/s00339-016-0329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0329-8

Keywords

Navigation