Skip to main content
Log in

Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Copper/copper oxide nanowires (NWs) are well known for its antibacterial activity against various pathogens. In the present study, we have shown the enhanced antibacterial activity of the NWs against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi) and gram-positive bacterial strains (Bacillus subtilis and Staphylococcus aureus). The increase in the activity is because of the shape and size of the colloidal NWs which were prepared at room temperature in a one-step process by pulsed laser ablation of copper metal target. The purity, shape and size of the colloidal NWs were well characterized by UV–visible absorption spectroscopy and transmission electron microscopy (TEM). The NWs were of diameters in the range of 15–30 nm and lengths ranging from 200 to 600 nm. The dose-dependent antibacterial activity of these NWs was found to be more effective against gram-negative bacteria compared to gram-positive bacteria. As gram-negative bacteria have thinner layer of cell wall made up of peptidoglycan possibly which makes them more susceptible to Cu/Cu2O NWs, Cu/Cu2O NWs can be a potent candidate to be used as bactericidal or as growth inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.C. Ray, Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 110, 5332–5365 (2010)

    Article  Google Scholar 

  2. M.K. Singh, A. Agarwal, R. Gopal, R.K. Swarnkar, R.K. Kotnala, Dumbbell shaped nickel nanocrystals synthesized by a laser induced fragmentation method. J. Mater. Chem. 21, 11074–11079 (2011)

    Article  Google Scholar 

  3. T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg, Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater. (2010). doi:10.1002/adfm.201001259

    Google Scholar 

  4. T. Niidome, Development of functional gold nanorods for bioimaging and photothermal therapy. J. Phys: Conf. Ser. 232, 012011-1-6 (2010)

    ADS  Google Scholar 

  5. S.B. Kalidindi, U. Sanyal, B.R. Jagirdar, Nanostructured Cu and Cu@ Cu2O core shell catalysts for hydrogen generation from ammonia—borane. Phys. Chem. Chem. Phys. 10, 5870–5874 (2008)

    Article  Google Scholar 

  6. O. Rubilar, M. Rai, G. Tortella, M.C. Diez, A.B. Seabra, N. Duran, Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol. Lett. 35, 1365–1376 (2013)

    Article  Google Scholar 

  7. M. Raffi, S. Mehrwan, T.M. Bhatti, J.I. Akhter, A. Hameed, W. Yawar, M.M. Ul Hasan, Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 60, 75–80 (2010)

    Article  Google Scholar 

  8. P. Pandey, S. Merwyn, G.S. Agarwal, B.K. Tripathi, S.C. Pant, Electrochemical synthesis of multi-armed CuO nanoparticles and their remarkable bactericidal potential against waterborne bacteria. J. Nanopart. Res. 14, 709-1-13 (2012)

    Article  Google Scholar 

  9. D. Longano, N. Ditaranto, N. Cioffi, F. Di Niso, T. Sibillano, A. Ancona, A. Conte, M.A.D. Nobile, L. Sabbatini, L. Torsi, Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal. Bioanal. Chem. 403, 1179–1186 (2012)

    Article  Google Scholar 

  10. P. Kalita, J. Singh, M.K. Singh, P.R. Solanki, G. Sumana, B.D. Malhotra, Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl. Phys. Lett. 100, 093702-1-4 (2012)

    Article  ADS  Google Scholar 

  11. P. Liu, W. Cai, Z. Haibo, Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium. J. Phys. Chem. C 112, 3261–3266 (2008)

    Article  Google Scholar 

  12. T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Nanosecond time-resolved observations of laser ablation of silver in water. Jpn. J. Appl. Phys. 46, 1533–1535 (2007)

    Article  ADS  Google Scholar 

  13. R.K. Swarnkar, S.C. Singh, R. Gopal, Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: structural and optical characterizations. Bull. Mater. Sci. 34, 1363–1369 (2011)

    Article  Google Scholar 

  14. J.K. Pandey, R.K. Swarnkar, K.K. Soumya, P. Dwivedi, M.K. Singh, S. Sundaram, R. Gopal, Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Appl. Biochem. Biotechnol. 174, 1021–1031 (2014)

    Article  Google Scholar 

  15. W. Irith, H. Kai, E.W. Robert, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008)

    Article  Google Scholar 

  16. H. Ehrenreich, H.R. Philipp, Optical properties of Ag and Cu. Phys. Rev. 128, 1622–1629 (1962)

    Article  ADS  Google Scholar 

  17. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)

    Article  Google Scholar 

  18. R.K. Swarnkar, R. Gopal, Controlled synthesis of cuprous oxide nanorings by pulsed laser ablation of copper metal in aqueous media of sodium dodecyl sulfate. Sci. Adv. Mater. 4, 511–517 (2012)

    Article  Google Scholar 

  19. Y. Shimotsuma, T. Yuasa, H. Homma, M. Sakakura, A. Nakao, K. Miura, K. Hirao, M. Kawasaki, J. Qiu, P.G. Kazansky, Photoconversion of copper flakes to nanowires with ultrashort pulse laser irradiation. Chem. Mater. 19, 1206–1208 (2007)

    Article  Google Scholar 

  20. J.P. Ruparelia, A. Kumar, S.P. Duttagupta, Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716 (2008)

    Article  Google Scholar 

  21. J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013)

    Article  Google Scholar 

  22. A.K. Suresh, D.A. Pelletiera, M.J. Doktycz, Relating nanomaterial properties and microbial toxicity. Nanoscale 5, 463–474 (2013)

    Article  ADS  Google Scholar 

  23. H.Y. Song, K.K. Ko, I.H. Oh, B.T. Lee, Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cells Mater. 11, 58–59 (2006)

    Google Scholar 

  24. F. Gao, H. Pang, L. Qingyi, Copper-based nanostructures: promising antibacterial agents and photocatalysts. Chem. Commun. 24, 3571–3573 (2009)

    Article  Google Scholar 

  25. J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ram´ırez, M.J. Yacaman, The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Professor N. P. Lalla, UGC-DAE-CSR Indore, for providing TEM facility and DRDO, New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Swarnkar or R. Gopal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarnkar, R.K., Pandey, J.K., Soumya, K.K. et al. Enhanced antibacterial activity of copper/copper oxide nanowires prepared by pulsed laser ablation in water medium. Appl. Phys. A 122, 704 (2016). https://doi.org/10.1007/s00339-016-0232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0232-3

Keywords

Navigation