Skip to main content

Advertisement

Log in

Three-dimensional nanostructures of multiwalled carbon nanotubes/graphene oxide/TiO2 nanotubes for supercapacitor applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

R(fMWCNT-GO)/TiO2NTs/Ti electrodes with three-dimensional nanostructures were prepared by co-electrochemical reduction of functionalized multiwalled carbon nanotubes (fMWCNTs) and graphene oxide (GO) onto TiO2 nanotubes/Ti. SEM studies revealed that the reduced fMWCNT-GO hybrid with highly network structures has been uniformly deposited onto the TiO2NTs arrays. The storage energy performance was investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques in 1.0 M H2SO4 aqueous solution. The R(fMWCNT-GO)/TiO2NTs/Ti electrodes exhibit a high specific capacitance up to 600 F g−1 at 12 A g−1 in 1 M H2SO4 and a long cyclic durability with 90 % capacitance retention over 500 cycling, indicating a potential application in electrode material of supercapacitors. The high capacitance of R(GO-fMWCNT)/TiO2NTs electrode could be attributed to the functional groups of GO-fMWCNT, the 3D structures of the electrode and the highly electrical conductivity fMWCNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Lu, M. Qiu, X. Qi, L. Yang, J. Yin, G. Hao, X. Feng, J. Li, J. Zhong, Appl. Phys. A 104, 545 (2011)

    Article  ADS  Google Scholar 

  2. X. Cui, R. Lv, R.U. Rehman, Sagar, C. Liu, Z. Zhang. Electrochim. Acta 169, 342 (2015)

    Article  Google Scholar 

  3. F. Markoulidis, C. Lei, C. Lekakou, Appl. Phys. A 111, 227 (2013)

    Article  ADS  Google Scholar 

  4. D. Schopf, M. Es-Souni, Appl. Phys. A 122, 203 (2016)

    Article  ADS  Google Scholar 

  5. Y.J. Qiao, C.S. Li, X.J. Chen, C.S. Jiao, Sci. China Tech. Sci. 55, 913 (2012)

    Article  Google Scholar 

  6. A. Wang, X. Zhou, T. Qian, C. Yu, S. Wu, J. Shen, Appl. Phys. A 120, 693 (2015)

    Article  ADS  Google Scholar 

  7. D. Ghosh, S. Giri, S. Dhibar, C. Kumar, Das. Electrochim. Acta 147, 557 (2014)

    Article  Google Scholar 

  8. X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 56, 9224 (2011)

    Article  Google Scholar 

  9. R.B. Rakhi, H.N. Alshareef, J. Power Sources 196, 8858 (2011)

    Article  ADS  Google Scholar 

  10. L. Jiang, L. Sheng, C. Long, Z. Fan, Nano Energy 11, 471 (2015)

    Article  Google Scholar 

  11. H.C. Hsu, C.H. Wang, Y.C. Chang, J.H. Hu, B.Y. Yao, C.Y. Lin, J. Phys. Chem. Solids 85, 62 (2015)

    Article  ADS  Google Scholar 

  12. X. Dong, G. Xing, M.B. Chan-Park, W. Shi, N. Xiao, J. Wang, Q. Yan, T.C. Sum, W. Huang, P. Chen, Carbon 49, 5071 (2011)

    Article  Google Scholar 

  13. F. Gobal, M. Faraji, Appl. Phys. A 117, 2087 (2014)

    Article  ADS  Google Scholar 

  14. G. Rajeshkhanna, E. Umeshbabu, P. Justin, G. Ranga, Rao. Int. J. Hydrogen Energ. 40, 12303 (2015)

    Article  Google Scholar 

  15. S. William, J.R. Hummers, E.O. Richard, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  16. J. Yun, D. Kim, G. Lee, J.S. Ha, Carbon 79, 156 (2014)

    Article  Google Scholar 

  17. M. Ramezani, M. Fathi, F. Mahboubi, Electrochim. Acta 174, 345 (2015)

    Article  Google Scholar 

  18. D.W. Wang, F. Li, H.M. Cheng, J. Power Sources 185, 1563 (2008)

    Article  ADS  Google Scholar 

  19. L.Z. Fan, S. Qiao, W. Song, M. Wu, X. He, X. Qu, Electrochim. Acta 105, 299 (2013)

    Article  ADS  Google Scholar 

  20. H.A. Andreas, B.E. Conway, Electrochim. Acta 51, 6510 (2006)

    Article  Google Scholar 

  21. T. Tao, L. Zhang, J. Hao, C. Li, New J. Chem. 37, 1294 (2013)

    Article  Google Scholar 

  22. X. Chen, X. Chen, F. Zhang, Z. Yang, S. Huang, J. Power Sources 243, 555 (2013)

    Article  ADS  Google Scholar 

  23. Y. Wei, H. Liu, Y. Jin, K. Cai, H. Li, Y. Liu, Z. Kang, Q. Zhang, New J. Chem. 37, 886 (2013)

    Article  Google Scholar 

  24. Y. Liu, J. Zhang, S. Wang, K. Wang, Z. Chen, Q. Xu, New J. Chem. 38, 4045 (2014)

    Article  Google Scholar 

  25. K.S. Kim, S.J. Park, Electrochim. Acta 56, 1629 (2011)

    Article  Google Scholar 

  26. I. Shakir, Electrochim. Acta 129, 396 (2014)

    Article  Google Scholar 

  27. W. Wang, S. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, C.S. Ozkan, Nano Energy 2, 294 (2013)

    Article  Google Scholar 

  28. Y. Zhang, Z. Zhen, Z. Zhang, J. Lao, J. Wei, K. Wang, F. Kang, H. Zhu, Electrochim. Acta 157, 134 (2015)

    Article  Google Scholar 

  29. H. Zanin, E. Saito, H.J. Ceragioli, V. Baranauskas, E.J. Corat, Mater. Res. Bull. 49, 487 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Office of Vice Chancellor for Research of Urmia University Research Project No. 004/S/94.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Faraji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, M. Three-dimensional nanostructures of multiwalled carbon nanotubes/graphene oxide/TiO2 nanotubes for supercapacitor applications. Appl. Phys. A 122, 697 (2016). https://doi.org/10.1007/s00339-016-0229-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0229-y

Keywords

Navigation