Skip to main content
Log in

Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Due to strong van der Waals (vdW) interactions, the graphene sheets and nanotubes stick to each other and form clusters of these corresponding nanostructures, viz. bi-layered graphene sheet (BLGS), double-walled carbon nanotube (DWCNT) and nanotube bundle (NB) or ropes. This research work is concerned with the study of nonlinear dynamics of BLGS, DWCNT and NB due to nonlinear interlayer vdW forces using multiscale atomistic finite element method. The energy between two adjacent carbon atoms is represented by the multibody interatomic Tersoff–Brenner potential, whereas the nonlinear interlayer vdW forces are represented by Lennard-Jones 6–12 potential function. The equivalent nonlinear material model of carbon–carbon bond is used to model it based on its force–deflection relation. Newmark’s algorithm is used to solve the nonlinear matrix equation governing the motion of the BLGS, DWCNT and NB. An impulse and harmonic excitations are used to excite these nanostructures under cantilevered, bridged and clamped boundary conditions. The frequency responses of these nanostructures are computed, and the dominant resonant frequencies are identified. Along with the forced vibration of these structures, the eigenvalue extraction problem of armchair and zigzag NB is also considered. The natural frequencies and corresponding mode shapes are extracted for the different length and boundary conditions of the nanotube bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45

Similar content being viewed by others

References

  1. C. Seoánez, F. Guinea, A.H. Castro Neto, Dissipation in graphene and nanotube resonators. Phys. Rev. B Condens. Matter Mater. Phys. 76, 1–8 (2007)

    Article  Google Scholar 

  2. C. Chen, J. Hone, Graphene nanoelectromechanical systems. Proc. IEEE 101, 1766–1779 (2013)

    Article  Google Scholar 

  3. Q. Zhou, A. Zettl, Electrostatic graphene loudspeaker. Appl. Phys. Lett. 102, 1–5 (2013)

    Google Scholar 

  4. H. Tian, D. Xie, Y. Yang, T.L. Ren, Y.F. Wang, C.J. Zhou, P.G. Peng, L.G. Wang, L.T. Liu, Single-layer graphene sound-emitting devices: experiments and modeling. Nanoscale 4, 2272–2277 (2012)

    Article  ADS  Google Scholar 

  5. M. Ge, K. Sattler, Bundles of carbon nanotubes generated by vapor-phase growth. Appl. Phys. Lett. 64, 710–711 (1994)

    Article  ADS  Google Scholar 

  6. Y. Sui, J. Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors. Nano Lett. 9, 2973–2977 (2009)

    Article  ADS  Google Scholar 

  7. S. Arghavan, A.V. Singh, Effects of van der Waals interactions on the nonlinear vibration of multi-layered graphene sheets. J. Phys. D Appl. Phys. 45, 1–8 (2012)

    Article  Google Scholar 

  8. T. Filleter, H.D. Espinosa, Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56, 1–11 (2013)

    Article  Google Scholar 

  9. C. Li, T.W. Chou, Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos. Sci. Technol. 63, 1517–1524 (2003)

    Article  Google Scholar 

  10. C.M. Wang, V.B.C. Tan, Y.Y. Zhang, Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J. Sound Vib. 294, 1060–1072 (2006)

    Article  ADS  Google Scholar 

  11. C. Sun, K. Liu, Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Commun. 143, 202–207 (2007)

    Article  ADS  Google Scholar 

  12. S.K. Georgantzinos, N.K. Anifantis, Vibration analysis of multi-walled carbon nanotubes using a spring-mass based finite element model. Comput. Mater. Sci. 47, 168–177 (2009)

    Article  Google Scholar 

  13. L.L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput. Mater. Sci. 47, 409–417 (2009)

    Article  Google Scholar 

  14. A. Khosrozadeh, M.A. Hajabasi, Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces. Appl. Math. Model. 36, 997–1007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. X.Q. He, S. Kitipornchai, K.M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators. Nanotechnology 16, 2086–2091 (2005)

    Article  ADS  Google Scholar 

  16. Y. Chandra, R. Chowdhury, F. Scarpa, S. Adhikari, Vibrational characteristics of bilayer graphene sheets. Thin Solid Films 519, 6026–6032 (2011)

    Article  ADS  Google Scholar 

  17. Z. Li, P. Dharap, S. Nagarajaiah, R.P. Nordgren, B. Yakobson, Nonlinear analysis of a SWCNT over a bundle of nanotubes. Int. J. Solids Struct. 41, 6925–6936 (2004)

    Article  MATH  Google Scholar 

  18. A. Fereidoon, A.M. Babaee, Y. Rostamiyan, Application of generalized differential quadrature method to nonlinear bending analysis of a single SWCNT over a bundle of nanotubes. Arch. Mech. 64, 347–366 (2012)

    MathSciNet  MATH  Google Scholar 

  19. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stöckli, N.A. Burnham, L. Forró, Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999)

    Article  ADS  Google Scholar 

  20. M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)

    Article  ADS  Google Scholar 

  21. J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988)

    Article  ADS  Google Scholar 

  22. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    Article  ADS  Google Scholar 

  23. S.O. Gajbhiye, S.P. Singh, Multiscale nonlinear frequency response analysis of single-layered graphene sheet under impulse and harmonic excitation using the atomistic finite element method. J. Phys. D Appl. Phys. 48, 1–16 (2015)

    Article  Google Scholar 

  24. S.O. Gajbhiye, S.P. Singh, Vibration analysis of single-walled carbon nanocones using multiscale atomistic finite element method incorporating Tersoff–Brenner potential. Appl. Phys. A Mater. Sci. Process. 120, 271–286 (2015)

    Article  ADS  Google Scholar 

  25. S.O. Gajbhiye, S.P. Singh, Vibration characteristics of open- and capped-end single-walled carbon nanotubes using multi-scale analysis technique incorporating Tersoff–Brenner potential. Acta Mech. 226, 3565–3586 (2015)

    Article  MathSciNet  Google Scholar 

  26. C. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  MATH  Google Scholar 

  27. M.M.S. Fakhrabadi, M. Samadzadeh, A. Rastgoo, M.H. Yazdi, M.M. Mashhadi, Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Phys. E 44, 565–578 (2011)

    Article  Google Scholar 

  28. C. Li, T.W. Chou, Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 121–123 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin O. Gajbhiye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gajbhiye, S.O., Singh, S.P. Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle. Appl. Phys. A 122, 523 (2016). https://doi.org/10.1007/s00339-016-0065-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0065-0

Keywords

Navigation