Skip to main content
Log in

Electrohydrodynamic direct-writing microfiber patterns under stretching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the rheology and deposition behaviors of electrohydrodynamic direct-write (EDW) jet under stretching tension are studied. The EDW jet is stretched into tightened state by the drag force from moving collector, when moving speed of collector is higher than deposition velocity of jet. The drag force from the moving collector provides an extra force to stretch the charged jet, which promotes the stability and decreases the diameter of direct-written fiber. The whipping and bending motion of jet can be overcome by the drag force, and then, straight orderly fibers are direct-written along the trajectory of collector. The falling jet would be also deviated from the extension line of spinneret by the drag force. As the collector velocity increases from 10 to 1000 mm/s, the average line width of direct-written microfiber decreases from 18.89 to 0.89 µm. The thickness of microfiber ranges from 100 nm to 1.5 µm. The moving collector leads to large deviation of charged jet. The tightened charged jet has good resistance against the interference of charge repulsion force, which helps to direct-write orderly nanofiber. During the EDW process, the mechanical stretching force had provided an excellent function to control the morphology and deposition pattern of micro-/nanofiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Sun, C. Chang, S. Li, L. Lin, Nano Lett. 6, 839 (2006)

    Article  ADS  Google Scholar 

  2. G. Zheng, W. Li, X. Wang, D. Wu, D. Sun, L. Lin, J. Phys. D Appl. Phys. 43, 415501 (2010)

    Article  Google Scholar 

  3. W. Li, G. Zheng, X. Wang, D. Sun, Opt. Precis. Eng. 18, 2231 (2010)

    Google Scholar 

  4. J. Jang, H. Oh, J. Lee, T. Song, Y.H. Jeong, D.W. Cho, Appl. Phys. Lett. 102, 211914 (2013)

    Article  ADS  Google Scholar 

  5. X. Wang, G. Zheng, L. Xu, W. Cheng, B. Xu, Y. Huang, D. Sun, Appl. Phys. A Mater. Sci. Process. 108, 825 (2012)

    Article  ADS  Google Scholar 

  6. G.F. Zheng, Y.B. Pei, X. Wang, J.Y. Zheng, D.H. Sun, Chin. Phys. B 23, 066102 (2014)

    Article  ADS  Google Scholar 

  7. Z. Liu, C. Pan, L. Lin, J. Huang, Z. Ou, Smart Mater. Struct. 23, 02503 (2014)

    Google Scholar 

  8. C. Chang, V.H. Tran, J. Wang, Y.-K. Fuh, L. Lin, Nano Lett. 10, 726 (2010)

    Article  ADS  Google Scholar 

  9. D.C. Daniela, F. Vito, R. Fabrizio, S. Sandro, L. Luca, C. Andrea, P. Dario, Nanoscale 5, 11637 (2013)

    Article  ADS  Google Scholar 

  10. L. Xu, W. Han, G. Zheng, D. Wu, X. Wang, D. Sun, Open Mech. Eng. J. 9, 666 (2015)

    Article  Google Scholar 

  11. T. Lei, X. Lu, F. Yang, AIP Adv. 5, 041301 (2015)

    Article  ADS  Google Scholar 

  12. G. Zheng, G. He, H. Liu, J. Zheng, W. Li, D. Sun, Opt. Precis. Eng. 22, 1555 (2014)

    Article  Google Scholar 

  13. Z. Liu, C. Pan, C. Su, L. Lin, Y. Chen and J. Tsai, Sensor Actuat. A Phys. 211, 78 (2014)

    Article  Google Scholar 

  14. X. Wang, L. Xu, G. Zheng, W. Cheng, D. Sun, Sci. China Technol. Sci. 55, 1603 (2012)

    Article  Google Scholar 

  15. G. Zheng, Z. Yu, M. Zhuang, W. Wei, Y. Zhao, J. Zheng, D. Sun, Appl. Phys. A Mater. Sci. Process. 116, 171 (2014)

    Article  ADS  Google Scholar 

  16. H. Kim, M. Lee, K.J. Park, S. Kim, L. Mahadevan, Nano Lett. 10, 2138 (2010)

    Article  ADS  Google Scholar 

  17. G. Zheng, L. Wang, D. Sun, Nanotechnol. Precis. Eng. 6, 20 (2008)

    Google Scholar 

  18. Z. Zhu, X. Chen, S. Huang, Z. Du, W. Liao, F. Fang, D. Peng, H. Wang, Appl. Phys. A Mater. Sci. Process. 120, 1435 (2015)

    Article  ADS  Google Scholar 

  19. H. Wang, M. Li, S. Huang, J. Zheng, X. Chen, X. Chen, Z. Zhu, Appl. Phys. A Mater. Sci. Process. 118, 621 (2014)

    Article  ADS  Google Scholar 

  20. F. Fang, X. Chen, Z. Du, Z. Zhu, X. Chen, H. Wang, P. Wu, Polymers 7, 1577 (2015)

    Article  Google Scholar 

  21. N. Bu, Y. Huang, H. Deng, Z. Yin, J. Phys. D Appl. Phys. 45, 405301 (2012)

    Article  ADS  Google Scholar 

  22. G. Zheng, L. Wang, H. Wang, D. Sun, W. Li, L. Lin, Adv. Mater. Res. 60–61, 439 (2009)

    Article  Google Scholar 

  23. Z. Lin, B. Yao, J. Ye, G. Zheng, Adv. Mater. Res. 197, 3 (2011)

    Google Scholar 

  24. M. Soheila, D. Yu, D.I. Jeffery, J. Polym. Sci. B Polym. Phys. 53, 1171 (2015)

    Google Scholar 

  25. H. Wang, M. Li, X. Chen, J. Zheng, X. Chen, Z. Zhu, AIP Adv. 5, 041302 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (Nos. 51305373, 51405408), Fundamental Research Funds for the Central Universities (No. 20720140517) and Natural Science Foundation of Fujian Province of China (No. 2014J05063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianyi Zheng or Juan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, G., Sun, L., Wang, X. et al. Electrohydrodynamic direct-writing microfiber patterns under stretching. Appl. Phys. A 122, 112 (2016). https://doi.org/10.1007/s00339-015-9584-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9584-3

Keywords

Navigation