Skip to main content
Log in

Properties of boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering at different substrate temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By pulsed DC magnetron sputtering, boron-doped ZnO (BZO) thin films were deposited on normal glass substrates at different substrate temperatures. The effect of substrate temperature on the properties of the BZO films was systematically investigated. Based on XRD data, the crystallization behaviors and the grain growth kinetics of the BZO films were analyzed. It was found that the substrate temperature of 300 °C is a critical temperature in the grain growth process of the BZO films. That is to say, the grain growth mechanism of the BZO films was different at the substrate temperature range of exceeding 300 °C or not. The morphological, electrical, and optical properties of the BZO films were studied by atomic force microscopy, Hall effect measurement system, and UV–Vis transmission spectroscopy, respectively. With increasing the substrate temperature, the carrier concentration and the carrier mobility increase, and the minimum resistivity (3.4 × 10−3 Ω cm) is observed at the substrate temperature of 400 °C. Moreover, the transmittance for every film is over 90 % in the visible range, and the optical band edge of the BZO films exhibits blueshift with increasing the substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.R. Potter, Solar Cells 16, 521 (1986)

    Article  ADS  Google Scholar 

  2. A. Banejee, G. Guha, J. Appl. Phys. 69, 1030 (1991)

    Article  ADS  Google Scholar 

  3. M.A. Martinez, J. Herero, M.T. Gutierez, Sol. Energy Mater. Sol. Cells 45, 75 (1997)

    Article  Google Scholar 

  4. D.G. Baik, S.M. Cho, Thin Solid Films 354, 227 (1999)

    Article  ADS  Google Scholar 

  5. B. Nasr, S. Dasgupta, J. Appl. Phys. 108, 103721 (2010)

    Article  ADS  Google Scholar 

  6. Y. Zhang, Inorg. Chem. 21, 3889 (1982)

    Article  Google Scholar 

  7. C. Marcel, J. Salardenne, Act. Passive Elec. Comp. 19, 217–223 (1997)

    Article  Google Scholar 

  8. S. Jana, A.S. Vuk, A. Mallick, B. Orel, P.K. Biswas, Mater. Res. Bull. 46, 2392 (2011)

    Article  Google Scholar 

  9. W.W. Wenas, A. Yamada, K. Takahashi, J. Appl. Phys. 70, 7119 (1991)

    Article  ADS  Google Scholar 

  10. X.L. Chen, B.H. Xu, J.M. Xue, Thin Solid Films 515, 3753 (2007)

    Article  ADS  Google Scholar 

  11. M.S. Kim, K.G. Yim, S. Kim, J. Sol-Gel. Sci. Technol. 59, 364 (2011)

    Article  Google Scholar 

  12. B. Wen, C.Q. Liu, W.D. Fei, H.L. Wang, S.M. Liu, N. Wang, W.P. Chai, Chem. Res. Chin. Unvi. 30, 509 (2014)

    Article  Google Scholar 

  13. V. Kumar, R.G. Singh, L.P. Purohit, R.M. Mehra, J. Mater. Sci. Technol. 27, 481 (2011)

    Article  Google Scholar 

  14. F. Paraguay, D.W. Estrada, Thin Solid Films 350, 192 (1999)

    Article  ADS  Google Scholar 

  15. X.G. Xu, H, L, Yang. Appl. Phys. Lett. 97, 232502 (2010)

    Article  ADS  Google Scholar 

  16. B. Sang, A. Yamada, Sol. Energy Mater. Sol. Cells 49, 19 (1997)

    Article  Google Scholar 

  17. T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 24, 781 (1985)

    Article  ADS  Google Scholar 

  18. L. Gao, Y. Zhang, J.M. Zhang, K.W. Xu, Appl. Surf. Sci. 257, 2498 (2011)

    Article  ADS  Google Scholar 

  19. Y. Wang, H. Huang, X. Meng, F. Yang, J. Nan, Q. Song, Q. Huang, Y. Zhao, X. Zhang, J. Alloys Compd. 636, 102 (2015)

    Article  Google Scholar 

  20. L. Pholds, M.E. Samiji, N.R. Mlyuka, B.S. Richards, R.T. Kivaisi, In 28th European Photovoltaic Solar Energy Conference And Exhibition, France (2013), p. 2311

  21. Y.L. Wang, X.Y. Li, G.S. Jiang, J. Mater. Sci. Mater. Electron. 24, 3764 (2013)

    Article  Google Scholar 

  22. F.M. d’Heurle, Metall. Trans. 1, 725 (1970)

    Article  Google Scholar 

  23. L. Ma, S. Ma, H. Chen, X. Ai, X. Huang, Appl. Surf. Sci. 257, 10036 (2011)

    Article  ADS  Google Scholar 

  24. N. Bouhssira, M.S. Aida, A. Mosbah, J. Cellier, J. Cryst. Growth 312, 3282 (2010)

    Article  ADS  Google Scholar 

  25. J. Wang, Y. Iwahashi, Z. Horita, M. Furukawa, M. Nemoto, R.Z. Valiev, T.G. Langdon, Acta Mater. 44, 2973 (1996)

    Article  Google Scholar 

  26. M. Chauhan, F.A. Mohamed, Mater. Sci. Eng. A 427, 7 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 51302024, 51002018 and 51472039), Program for Liaoning Excellent Talents in University (Grant No. LJQ20122038), Higher Specialized Research Fund for the Doctoral Program (Grant No. 20122124110004), Project of Education Department of Liaoning Province (Grant No. L2013179), Project of Open Research Foundation of State Key Laboratory of Advanced Technology for Float Glass (Grant No. KF1301-01), Dalian Science and Technology Plan Project (Grant No. 2011A15GX025), Dalian Science and Technology Plan Project (No. 2010J21DW008) and Qinghai province science and technology project (No. 2012-Z-701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Q. Liu or W. D. Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, B., Liu, C.Q., Wang, N. et al. Properties of boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering at different substrate temperatures. Appl. Phys. A 121, 1147–1153 (2015). https://doi.org/10.1007/s00339-015-9479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9479-3

Keywords

Navigation