Skip to main content
Log in

Room-temperature ferromagnetism in Fe-doped In2O3 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanoparticles of Fe-doped In2O3 [(In1−x Fe x )2O3, 0 ≤ x ≤ 0.10] are prepared by a simple polymerized complex method using indium (III) nitrate hydrate, iron (III) nitrate nonahydrate and polyvinyl pyrrolidone as the starting materials. The XRD, Raman and electron diffraction analysis results indicated that the calcined samples have the cubic structure of In2O3. An X-ray absorption spectroscopy including X-ray absorption near-edge spectroscopy is used in order to address both qualitative and quantitative of doped Fe valence states. The undoped sample exhibits a diamagnetic behavior, whereas all the Fe-doped samples are ferromagnetic having the magnetizations of ~0.0019–0.2959 emu/g at 10 kOe. Our results indicate that room-temperature ferromagnetism of Fe-doped In2O3 system is intrinsic and is not a result of any ferromagnetic impurity phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.B. Fitzgerald, M. Venkatesan, A.P. Douvalis, S. Huber, J.M.D. Coey, T. Bakas, J. Appl. Phys. 95, 7390 (2004)

    Article  ADS  Google Scholar 

  2. S.R. Shinde, S.B. Ogale, S. Das Sarma, J.R. Simpson, H.D. Drew, S.E. Lofland, C. Lanci, J.P. Buban, N.D. Browning, V.N. Kulkarni, J. Higgins, R.P. Sharma, R.L. Greene, T. Venkatesan, Phys. Rev. B 67, 115211 (2003)

    Article  ADS  Google Scholar 

  3. J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, J. Am. Chem. Soc. 126, 11640 (2004)

    Article  Google Scholar 

  4. B. Martínez, F. Sandiumenge, Ll. Balcells, J. Arbiol, F. Sibieude, C. Monty. Appl. Phys. Lett. 86, 103113 (2005)

    Article  ADS  Google Scholar 

  5. M. Venkatesan, P. Stamenov, L.S. Dorneles, R.D. Gunning, B. Bernoux, J.M.D. Coey, Appl. Phys. Lett. 90, 242508 (2007)

    Article  ADS  Google Scholar 

  6. S. Phokha, S. Pinitsoontorn, S. Maensiri, J. Appl. Phys. 112, 113904 (2012)

    Article  ADS  Google Scholar 

  7. S. Phokha, S. Pinitsoontorn1, P. Chirawatkul, Y. Poo-arporn, S. Maensiri. Nanoscale Res. Lett. 7, 1 (2012)

    Article  ADS  Google Scholar 

  8. A. Singhal, S.N. Achary, J. Manjanna, O.D. Jayakumar, R.M. Kadam, A.K. Tyagi, J. Phys. Chem. C 113, 3600 (2009)

    Article  Google Scholar 

  9. F.-X. Jiang, X.-H. Xu, J. Zhang, H.-S. Wu, G.A. Gehring, Appl. Surf. Sci. 255, 3655 (2009)

    Article  ADS  Google Scholar 

  10. F.-X. Jiang, Q. Feng, Z.-Y. Quan, R.-R. Ma, S.M. Heald, G.A. Gehring, X.-H. Xu, Mater. Res. Bull. 48, 3178 (2013)

    Article  Google Scholar 

  11. Y.K. Yoo, Q. Xue, H.-C. Lee, S. Cheng, X.-D. Xiang, G.F. Dionne, S. Xu, J.H. Yong, S. Chu, S.D. Preite, Samuel E. Lofland, I. Takeuchi. Appl. Phys. Lett. 86, 042506 (2005)

    Article  ADS  Google Scholar 

  12. S. Yan, S. Ge, Y. Zuo, W. Qiao, L. Zhang, Scripta Meter. 61, 387 (2009)

    Article  Google Scholar 

  13. S. Yan, S. Ge, W. Qiao, S. Ge, F. Xu, L. Xi, J. Magn. Magn. Mater. 323, 264 (2011)

  14. Q. Sun, Y.-P. Zeng, D. Jiang, Solid State Commun. 151, 1220 (2011)

    Article  ADS  Google Scholar 

  15. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edn. (Printice Hall, New Jersey, 2001), p. 388

    Google Scholar 

  16. X. Li, C. Xia, G. Pei, X. He, J. Phys. Chem. Solid. 68, 1836 (2007)

    Article  ADS  Google Scholar 

  17. G. Peleckis, X.L. Wang, S.X. Dou, Appl. Phys. Lett. 88, 132507 (2006)

    Article  ADS  Google Scholar 

  18. S. Sahoo, A.P.S. Gaur, A.K. Arora, R.S. Katiyar, Chem. Phys. Lett. 510, 242 (2011)

    Article  ADS  Google Scholar 

  19. W.B. White, V.G. Keramidas, Spectrochim. Acta A 28, 501 (1972)

    Article  ADS  Google Scholar 

  20. H. Yang, S. Wang, Y. Yang, Mater. Lett. 110, 45 (2013)

    Article  Google Scholar 

  21. E. Rani Aluri, A.P. Grosvenor, J. Phys. Chem. Solids. 74, 830 (2013)

  22. S. Daengsakul, P. Kidkhunthod, O. Soisang, T. Kuenoon, A. Bootchanont, S. Maensiri, Microelectron. Eng. 146, 38 (2015)

    Article  Google Scholar 

  23. J. Yu, L.B. Duan, Y.C. Wang, G.H. Rao, J. Solid State Chem. 182, 1563 (2009)

    Article  ADS  Google Scholar 

  24. M.V. Limaye, S.B. Singh, R. Das, P. Poddar, S.K. Kulkarni, J. Solid State Chem. 184, 391 (2011)

    Article  ADS  Google Scholar 

  25. D.A. Schwartz, N.S. Norberg, Q.P. Nguyen, J.M. Parker, D.R. Gamelin, J. Am. Chem. Soc. 125, 13205 (2003)

    Article  Google Scholar 

  26. S. Maensiri, K. Wongsaprom, E. Swatsitang, S. Seraphin, J. Appl. Phys. 102, 076110 (2007)

    Article  ADS  Google Scholar 

  27. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004)

    Article  ADS  Google Scholar 

  28. A. Tiwari, V.M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Appl. Phys. Lett. 88, 142511 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Synchrotron Light Research Institute (BL5.2) (Public Organization), Nakhon Ratchasima, Thailand, for XAS facilities. This work was supported by the Thailand Research Fund (TRF), the Commission on Higher Education (CHE) and Mahasarakham University (MSU), Thailand (Contract No. MRG5480053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwanruthai Wongsaprom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wongsaprom, K., Sonsupap, S., Maensiri, S. et al. Room-temperature ferromagnetism in Fe-doped In2O3 nanoparticles. Appl. Phys. A 121, 239–244 (2015). https://doi.org/10.1007/s00339-015-9416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9416-5

Keywords

Navigation