Skip to main content
Log in

Visible light photocatalytic activity of rutile TiO2 fiber clusters in the degradation of terephthalic acid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rutile TiO2 nanoparticles, in different structural and morphological properties, were produced by the hydrolysis of titanium tetrachloride in a highly acidic reaction media at moderate temperatures without calcination. Their photocatalytic activities were investigated in the liquid-phase degradation of terephthalic acid under visible light illumination. The parameters, which are the concentration of the titanium tetrachloride solution (0.1–1 M) and reaction temperature (60–95 °C), effective on the properties of the particles, and their photocatalytic performances, were investigated. The XRD patterns indicated a pure rutile crystal structure at moderate temperatures without need of calcination. The FEGSEM images showed the formation of flower-, pinecone-, and sphere-like clusters consisting of interconnected nanofibers. The N2 adsorption–desorption isotherms pointed out the microporous structure of the clusters. Band gap energies were found to be varying between 3.02 and 3.08 eV due to the well-developed rutile crystallite structure. Systematic studies elucidated that the optimum reactant concentration and reaction temperature are 0.5 M TiCl4 and 95 °C, respectively. The rutile clusters synthesized at the optimum reaction conditions exhibited 99 % of the photocatalytic degradation of TPA under visible light illumination at shorter irradiation times compared with commercial P25 TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Nogawa, T. Isobe, S. Matsushita, A. Nakajima, Mater. Lett. 82, 174 (2012)

    Article  Google Scholar 

  2. A. Nilchi, S.J. Darzi, A.R. Mahjoub, S.R. Garmarodi, Colloids Surf. A 361, 25 (2010)

    Article  Google Scholar 

  3. E. Manova, P. Aranda, M.A. Martin-Luengo, S. Letaief, E. Ruiz-Hitzky, Microporous Mesoporous Mater. 131, 252 (2010)

    Article  Google Scholar 

  4. C.J. Lin, Y.H. Liou, Y. Zhang, C.L. Chen, C.L. Dong, S.Y. Chen, G.D. Stucky, Appl. Catal. B 127, 175 (2012)

    Article  Google Scholar 

  5. N. Riaz, F.K. Chong, B.K. Dutta, Z.B. Man, M.S. Khan, E. Nurlaela, Chem. Eng. J. 185, 108 (2012)

    Article  Google Scholar 

  6. J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136, 8839 (2014)

    Article  Google Scholar 

  7. W. Xie, H. Chen, X. Zhang, X. Hu, G. Li, J. Chen, Chin. J. Catal. 34, 1076 (2013)

    Article  Google Scholar 

  8. K.C. Huang, S.H. Chien, Appl. Catal. B Environ. 140–141, 283 (2013)

    Article  MATH  Google Scholar 

  9. J. Orlikowski, B. Tryba, J. Ziebro, A.W. Morawski, J. Przepiorski, Catal. Commun. 24, 5 (2012)

    Article  Google Scholar 

  10. G. Zhang, Y.C. Zhang, M. Nadagouda, C. Han, K. O’Shea, S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Appl. Catal. B Environ. 144, 614 (2014)

    Article  Google Scholar 

  11. L. Zhu, K. Liu, H. Li, Y. Sun, M. Qiu, Solid State Sci. 20, 8 (2013)

    Article  ADS  Google Scholar 

  12. Y. Gao, H. Wang, J. Wu, R. Zhao, Y. Lu, B. Xin, Appl. Surf. Sci. 294, 36 (2014)

    Article  ADS  Google Scholar 

  13. F. Xu, W. Xiao, B. Cheng, J. Yu, Int. J. Hydrog. Energy 39, 15394 (2014)

    Article  Google Scholar 

  14. D. Dolat, D. Moszynski, N. Guskos, B. Ohtani, A.W. Morawski, Appl. Surf. Sci. 266, 410 (2013)

    Article  ADS  Google Scholar 

  15. D. Dolat, B. Ohtani, S. Mozia, D. Moszynski, N. Guskos, Z.L. Bielun, A.W. Morawski, Chem. Eng. J. 239, 149 (2014)

    Article  Google Scholar 

  16. D. Zhang, M. Wen, S. Zhang, P. Liu, W. Zhu, G. Li, H. Li, Appl. Catal. B Environ. 147, 610 (2014)

    Article  Google Scholar 

  17. T.H. Kim, V.R. Gonzalez, G. Gyawali, S.H. Cho, T. Sekino, S.W. Lee, Catal. Today 212, 75 (2013)

    Article  Google Scholar 

  18. B. Cao, W. Yao, C. Wang, X. Ma, X. Feng, X. Lu, Mater. Lett. 64, 1819 (2010)

    Article  Google Scholar 

  19. A. Heciak, A.W. Morawski, B. Grzmil, S. Mozia, Appl. Catal. B Environ. 140, 108 (2013)

    Article  Google Scholar 

  20. S. Ge, B. Wang, D. Li, W. Fa, Z. Yang, Z. Yang, G. Jia, Z. Zheng, Appl. Surf. Sci. 295, 123 (2014)

    Article  ADS  Google Scholar 

  21. T. Yan, R. Yuan, W. Li, J. You, Appl. Catal. A Gen. 478, 204 (2014)

    Article  Google Scholar 

  22. D. Sannino, V. Vaiano, P. Ciambelli, G. Carotenuto, M. Di Serio, E. Santacesaria, Catal. Today 209, 159 (2013)

    Article  Google Scholar 

  23. L. Pinho, F. Elhaddad, D.S. Facio, M.J. Mosquera, Appl. Surf. Sci. 275, 389 (2013)

    Article  ADS  Google Scholar 

  24. Y. Yang, F. Su, S. Zhang, W. Guo, X. Yuan, Y. Guo, Colloids Surf. A 415, 399 (2012)

    Article  MATH  Google Scholar 

  25. T. Cetinkaya, L. Neuwirthova, K.M. Kutlakova, V. Tomasek, H. Akbulut, Appl. Surf. Sci. 279, 384 (2013)

    Article  ADS  Google Scholar 

  26. M. Bonne, S. Pronier, F. Can, X. Courtois, S. Valange, J.M. Tatibouet, S. Royer, P. Marecot, D. Duprez, Solid State Sci. 12, 1002 (2010)

    Article  ADS  MATH  Google Scholar 

  27. X.Y. Chen, S.X. Liu, X.Q. Zhang, J. Inorg. Mater. 23, 464 (2008)

    Article  ADS  Google Scholar 

  28. C. Yuefeng, W. Hui, H. Mingjuan, G. Guofeng, International Conference on Energy and Environment Technology 658 (2009)

  29. A. Nasonova, K.S. Kim, Catal. Today 211, 90 (2013)

    Article  Google Scholar 

  30. S. Gomez, C.L. Marchena, L. Pizzio, L. Pierella, J. Hazard. Mater. 258, 19 (2013)

    Article  Google Scholar 

  31. Z.J. Wang, L.H. Teng, J. Zhang, X.L. Huang, J.F. Zhang, Afr. J. Biotechnol. 10, 3143 (2011)

    Google Scholar 

  32. H.B. Yener, Ş.Ş. Helvacı, Sep. Purif. Technol. 140, 84 (2015)

    Article  Google Scholar 

  33. A. Shafaei, M. Nikazar, M. Arami, Desalination 252, 8 (2010)

    Article  Google Scholar 

  34. J.P. Gustafsson, Visual MINTEQ ver.3.0, Department of Land and Water Resources, Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden (2011)

  35. Y. Li, J. Liu, Z. Jia, Mater. Lett. 60, 1753 (2006)

    Article  Google Scholar 

  36. R. Chu, J. Yan, S. Lian, Y. Wang, F. Yan, D. Chen, Solid State Commun. 130, 789 (2004)

    Article  ADS  Google Scholar 

  37. U.I. Gaya, A.H. Abdullah, J. Photochem. Photobiol. C 9, 1 (2008)

    Article  Google Scholar 

  38. H.B. Yener, Synthesis of titanium dioxide nano particles and their photocatalytic activities on degradation of terephthalic acid (TPA), Ege University Graduate School of Applied and Natural Sciences, PhD thesis (2011)

  39. A. Sun, Z. Li, M. Li, G. Xu, Y. Li, P. Cui, Powder Technol. 201, 130 (2010)

    Article  Google Scholar 

  40. C. Charbonneau, R. Gauvin, G.P. Demopoulos, J. Cryst. Growth 312, 86 (2009)

    Article  ADS  Google Scholar 

  41. H.B. Yener, S. Şarkaya, Ş.Ş. Helvacı, Prog. Colloid Polym. Sci. 137, 23 (2010)

    Google Scholar 

  42. C.X. Tian, Y. Yang, H. Pu, Appl. Surf. Sci. 257, 8391 (2011)

    Article  ADS  Google Scholar 

  43. Q. Xiang, J. Yu, P. Wong, J. Colloid Interf. Sci. 357, 163 (2011)

    Article  Google Scholar 

  44. K. Bubacz, E. Kusiak-Nejman, B. Tryba, A.W. Morawski, J. Photochem. Photobiol. A 261, 7 (2013)

    Article  Google Scholar 

  45. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun. 2, 207 (2000)

    Article  Google Scholar 

  46. G.L. Newton, J.R. Milligan, Radiat. Phys. Chem. 75, 473 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) through Projects 104M255 and 110M451, the Science, Technology Application, and Research Center of Ege University (EBILTEM) through Project 2012/BIL/027, and the Scientific Research Council of Ege University through Project 12MUH042. The authors also thank Prof. Dr. F. S. C. Özkan and specialist Nesrin Tatlıdil (Department of Chemical Engineering, Izmir Institute of Technology) for surface area measurements and PETKIM Petrokimya Holding Co. for the TPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şerife Ş. Helvacı.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yener, H.B., Helvacı, Ş.Ş. Visible light photocatalytic activity of rutile TiO2 fiber clusters in the degradation of terephthalic acid. Appl. Phys. A 120, 967–976 (2015). https://doi.org/10.1007/s00339-015-9263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9263-4

Keywords

Navigation