Skip to main content
Log in

A step toward next-generation nanoimprint lithography: extending productivity and applicability

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Because of its unique principle based on mechanical deformation, nanoimprint lithography (NIL) has been playing an important role for nanopatterning and nanofabrication beyond the limit of conventional optical lithography. Many diverse fields involving electronics, photonics, and energy engineering have all shown significant increase in utilization of nanopattern structures, particularly in large areas and at submicron scales. To meet this demand, expanding the realm of NIL toward more scalable and versatile patterning technology is in high demand. In this feature article, we give an overview of how NIL can extend productivity and applicability by addressing three key issues: continuous NIL for more scalable nanopatterning, large-area mold fabrications, and novel resist engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.J. Guo, Adv. Mater. 19(4), 495 (2007)

    Article  Google Scholar 

  2. H. Schift, J. Vac. Sci. Technol. B 26(2), 458 (2008)

    Article  Google Scholar 

  3. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Science 272(5258), 85 (1996)

    Article  ADS  Google Scholar 

  4. H.C. Scheer, N. Bogdanski, M. Wissen, S. Mollenbeck, Microelectron. Eng. 85(5–6), 890 (2008)

    Article  Google Scholar 

  5. M. Bender, A. Fuchs, U. Plachetka, H. Kurz, Microelectron. Eng. 83(4–9), 827 (2006)

    Article  Google Scholar 

  6. H.B. Lan, H.Z. Liu, J. Nanosci. Nanotechnol. 13(5), 3145 (2013)

    Article  Google Scholar 

  7. J.J. Dumond, H.Y. Low, J. Vac. Sci. Technol. B 30(1), 010801 (2012)

    Article  Google Scholar 

  8. J.G. Ok, S.H. Ahn, M.K. Kwak, L.J. Guo, J. Mater. Chem. C 1(46), 7681 (2013)

    Article  Google Scholar 

  9. S.H. Ahn, L.J. Guo, Adv. Mater. 20(11), 2044 (2008)

    Article  Google Scholar 

  10. S.H. Ahn, L.J. Guo, ACS Nano 3(8), 2304 (2009)

    Article  Google Scholar 

  11. J.G. Ok, H.S. Youn, M.K. Kwak, K.T. Lee, Y.J. Shin, L.J. Guo, A. Greenwald, Y.S. Liu, Appl. Phys. Lett. 101(22), 4 (2012)

    Article  Google Scholar 

  12. H.J. Park, M.G. Kang, S.H. Ahn, L.J. Guo, Adv. Mater. 22(35), E247 (2010)

    Article  Google Scholar 

  13. S.H. Ahn, J.S. Kim, L.J. Guo, J. Vac. Sci. Technol. B 25(6), 2388 (2007)

    Article  Google Scholar 

  14. S.H. Ahn, L.J. Guo, Nano Lett. 9(12), 4392 (2009)

    Article  ADS  Google Scholar 

  15. J.G. Ok, H.J. Park, M.K. Kwak, C.A. Pina-Hernandez, S.H. Ahn, L.J. Guo, Adv. Mater. 23(38), 4444 (2011)

    Article  Google Scholar 

  16. S.H. Ahn, J.G. Ok, M.K. Kwak, K.T. Lee, J.Y. Lee, L.J. Guo, Adv. Funct. Mater. 23(37), 4739 (2013)

    Google Scholar 

  17. J.G. Ok, A. Panday, T. Lee, L.J. Guo, Nanoscale 6(24), 14636 (2014)

    Article  ADS  Google Scholar 

  18. C. Ross, Annu. Rev. Mater. Res. 31, 203 (2001)

    Article  ADS  Google Scholar 

  19. C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Nature 445(7129), 749 (2007)

    Article  ADS  Google Scholar 

  20. H.J. Park, M.G. Kang, L.J. Guo, ACS Nano 3(9), 2601 (2009)

    Article  Google Scholar 

  21. M.K. Kwak, J.G. Ok, S.H. Lee, L.J. Guo, Mater. Horiz. 2(1), 86 (2015)

    Article  Google Scholar 

  22. S.J. Choi, H.N. Kim, W.G. Bae, K.Y. Suh, J. Mater. Chem. 21(38), 14325 (2011)

    Article  Google Scholar 

  23. C.R. Martin, Science 266(5193), 1961 (1994)

    Article  ADS  Google Scholar 

  24. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, U. Gosele, Adv. Mater. 19(7), 917 (2007)

    Article  Google Scholar 

  25. C.J. Hawker, T.P. Russell, MRS Bull. 30(12), 952 (2005)

    Article  Google Scholar 

  26. F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990)

    Article  ADS  Google Scholar 

  27. E. Huang, L. Rockford, T.P. Russell, C.J. Hawker, Nature 395(6704), 757 (1998)

    Article  ADS  Google Scholar 

  28. D.Y. Ryu, K. Shin, E. Drockenmuller, C.J. Hawker, T.P. Russell, Science 308(5719), 236 (2005)

    Article  ADS  Google Scholar 

  29. J.N.L. Albert, T.H. Epps, Mater. Today 13(6), 24 (2010)

    Article  Google Scholar 

  30. S.W. Hong, X.D. Gu, J. Huh, S.G. Xiao, T.P. Russell, ACS Nano 5(4), 2855 (2011)

    Article  Google Scholar 

  31. K.J. Morton, G. Nieberg, S. Bai, S.Y. Chou, Nanotechnology 19(34), 345301 (2008)

    Article  Google Scholar 

  32. C. Pina-Hernandez, L.J. Guo, P.-F. Fu, ACS Nano 4(8), 4776 (2010)

    Article  Google Scholar 

  33. C. Pina-Hernandez, P.-F. Fu, L.J. Guo, ACS Nano 5(2), 923 (2011)

    Article  Google Scholar 

  34. T. Asefa, M.J. MacLachlan, H. Grondey, N. Coombs, G.A. Ozin, Angew. Chem. 112(10), 1878 (2000)

    Article  Google Scholar 

  35. D. Morecroft, J.K. Yang, S. Schuster, K.K. Berggren, Q. Xia, W. Wu, R.S. Williams, J. Vac. Sci. Technol. B 27(6), 2837 (2009)

    Article  Google Scholar 

  36. S.Y. Chou, P.R. Krauss, W. Zhang, L. Guo, L. Zhuang, J. Vac. Sci. Technol. B 15(6), 2897 (1997)

    Article  Google Scholar 

  37. E. Delamarche, H. Schmid, B. Michel, H. Biebuyck, Adv. Mater. 9(9), 741 (1997)

    Article  Google Scholar 

  38. B.K. Lee, N.G. Cha, L.Y. Hong, D.P. Kim, H. Tanaka, H.Y. Lee, T. Kawai, Langmuir 26(18), 14915 (2010)

    Article  Google Scholar 

  39. Y.J. Shin, Y.-K. Wu, L.J. Guo, Nanotechnology 24(25), 255302 (2013)

    Article  ADS  Google Scholar 

  40. C. Pina-Hernandez, V. Lacatena, G. Calafiore, S. Dhuey, K. Kravtsov, A. Goltsov, D. Olynick, V. Yankov, S. Cabrini, C. Peroz, Nanotechnology 24(6), 065301 (2013)

    Article  ADS  Google Scholar 

  41. R. Ganesan, J. Dumond, M.S. Saifullah, S.H. Lim, H. Hussain, H.Y. Low, ACS Nano 6(2), 1494 (2012)

    Article  Google Scholar 

  42. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S.H. Kim, J.-D. Park, S.-H. Lee, P.-W. Yoon, Nanotechnology 16(9), 1874 (2005)

    Article  ADS  Google Scholar 

  43. Y.J. Shin, C. Pina-Hernandez, Y.-K. Wu, J.G. Ok, L.J. Guo, Nanotechnology 23(34), 344018 (2012)

    Article  Google Scholar 

  44. Y.J. Shin, Y.K. Wu, K.T. Lee, J.G. Ok, L.J. Guo, Adv. Opt. Mater. 1(11), 863 (2013)

    Article  Google Scholar 

  45. A.E. Hollowell, L.J. Guo, Adv. Opt. Mater. 1(4), 343 (2013)

    Article  Google Scholar 

  46. A. Boltasseva, J. Opt. Pure Appl. Opt. 11(11), 114001 (2009)

    Article  ADS  Google Scholar 

  47. B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N.S. Sariciftci, I. Riedel, V. Dyakonov, J. Parisi, Appl Phys Mater. Sci Process. 79(1), 1 (2004)

    Article  ADS  Google Scholar 

  48. Z. Chen, B. Cotterell, W. Wang, E. Guenther, S.J. Chua, Thin Solid Films 394(1–2), 202 (2001)

    Google Scholar 

  49. M.W. Rowell, M.A. Topinka, M.D. McGehee, H.J. Prall, G. Dennler, N.S. Sariciftci, L.B. Hu, G. Gruner, Appl. Phys. Lett. 88(23), 233506 (2006)

    Article  ADS  Google Scholar 

  50. M.G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, IEEE J. Sel. Top. Quantum Electron. 16(6), 1807 (2010)

    Article  Google Scholar 

  51. M.G. Kang, M.S. Kim, J.S. Kim, L.J. Guo, Adv. Mater. 20(23), 4408 (2008)

    Article  Google Scholar 

  52. M.G. Kang, H.J. Park, S.H. Ahn, L.J. Guo, Sol. Energy Mater. Sol. Cells 94(6), 1179 (2010)

    Article  Google Scholar 

  53. H.J. Park, T. Xu, J.Y. Lee, A. Ledbetter, L.J. Guo, ACS Nano 5(9), 7055 (2011)

    Article  Google Scholar 

  54. J.G. Ok, M.K. Kwak, C.M. Huard, H.S. Youn, L.J. Guo, Adv. Mater. 25(45), 6554 (2013)

    Article  Google Scholar 

  55. M.K. Kwak, J.G. Ok, J.Y. Lee, L.J. Guo, Nanotechnology 23(34), 6 (2012)

    Article  Google Scholar 

  56. H.A. Atwater, A. Polman, Nat. Mater. 9(3), 205 (2010)

    Article  ADS  Google Scholar 

  57. E. Ozbay, Science 311(5758), 189 (2006)

    Article  ADS  Google Scholar 

  58. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424(6950), 824 (2003)

    Article  ADS  Google Scholar 

  59. M.G. Kang, T. Xu, H.J. Park, X.G. Luo, L.J. Guo, Adv. Mater. 22(39), 4378 (2010)

    Article  Google Scholar 

  60. H.J. Park, H. Kim, J.Y. Lee, T. Lee, L.J. Guo, Energy Environ. Sci. 6(7), 2203 (2013)

    Article  Google Scholar 

  61. H.J. Park, J.Y. Lee, T. Lee, L.J. Guo, Adv. Energy Mater. 3(9), 1135 (2013)

    Article  Google Scholar 

  62. W.A. Luhman, R.J. Holmes, Adv. Funct. Mater. 21(4), 764 (2011)

    Article  Google Scholar 

  63. H.J. Park, L.J. Guo, Chin. Chem. Lett. 26, 419 (2015)

  64. H. Youn, H.J. Park, L.J. Guo, Energy Technol. 3, 340 (2015)

  65. T. Xu, Y.K. Wu, X.G. Luo, L.J. Guo, Nat. Commun. 1, 59 (2010)

    ADS  Google Scholar 

  66. Y.K.R. Wu, A.E. Hollowell, C. Zhang, L.J. Guo, Sci. Rep. 3, 1194 (2013)

  67. Y.J. Shin, C. Pina-Hernandez, Y.K. Wu, J.G. Ok, L.J. Guo, Nanotechnology 23(34), 6 (2012)

    Article  Google Scholar 

  68. M.G. Kang, L.J. Guo, Adv. Mater. 19(10), 1391 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF grant CMMI 1025020 through the subcontract from University of Massachusetts, Amherst. JGO acknowledges the support by the Research Program funded by the Seoul National University of Science and Technology. HJP acknowledges the support by Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), and the support by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2056403). YJS acknowledges the support by Multidisciplinary University Research Initiatives (MURI) Program and Korean Pioneer Project funded by the National Research Foundation of Korea (NRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong G. Ok, Hui Joon Park or L. Jay Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ok, J.G., Shin, Y.J., Park, H.J. et al. A step toward next-generation nanoimprint lithography: extending productivity and applicability. Appl. Phys. A 121, 343–356 (2015). https://doi.org/10.1007/s00339-015-9229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9229-6

Keywords

Navigation