Skip to main content
Log in

Numerical analysis of complex impedance and microwave absorption of metamaterials composed of split cut wires on grounded dielectric substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The microwave absorption of metamaterials composed of split cut wire (SCW) on grounded dielectric substrate has been investigated on the basis of equivalent transmission line circuit. S-parameters (S 11 and S 21) and input impedance are numerically simulated with variations of the thickness and dielectric loss of the substrate and the geometry of the SCW. Magnetic resonance resulting from antiparallel currents between SCW and ground plane was observed at the frequency of minimum reflection loss. The simulated resonance frequency and reflection loss can be explained well on the basis of the circuit theory of an LC resonator. Analysis of the input impedance of the high impedance surface has shown that perfect absorption can be obtained at the optimized impedance-matching condition, which is dependent on SCW width, thickness and the dielectric loss of the substrate. Better insight into the absorption mechanism of metamaterial absorbers can be attained through the parametric analysis on complex impedance of SCW and its relationship with reflection loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76(25), 4773–4776 (1996)

    Article  ADS  Google Scholar 

  2. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  3. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  4. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  5. C.M. Watts, X. Liu, W.J. Padilla, Adv. Mater. 24, 98–120 (2012)

    Google Scholar 

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  7. C.H. Lin, R.L. Chern, H.Y. Lin, Opt. Express 19, 415–424 (2011)

    Article  ADS  Google Scholar 

  8. M. Diem, T. Koschny, C.M. Soukoulis, Phys. Rev. B 79, 033101 (2009)

    Article  ADS  Google Scholar 

  9. Y. Avitzour, Y.A. Urzhumov, G. Shvets, Phys. Rev. B 79, 045131 (2009)

    Article  ADS  Google Scholar 

  10. J. Zhou, E.N. Economon, T. Koschny, C.M. Soukoulis, Opt. Lett. 31(24), 3620–3622 (2006)

    Article  ADS  Google Scholar 

  11. M. Li, S. Liu, L. Guo, H. Lin, H. Yang, B. Xiao, Opt. Comm. 295, 262–267 (2013)

    Article  ADS  Google Scholar 

  12. H. Wakatsuchi, S. Greedy, C. Christopoulos, J. Paul, Opt. Express 18(21), 22187–22198 (2010)

    Article  ADS  Google Scholar 

  13. W. Li, T. Wu, W. Wang, J. Guan, P. Zhai, Appl. Phys. Lett. 104(2), 022903 (2014)

    Article  ADS  Google Scholar 

  14. H. Wakatsuchi, J. Paul, S. Greedy, C. Christopoulos, IEEE Trans. Antennas Propag. 60(8), 3670–3678 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  15. J. Zhou, L. Zhang, G. Tuttle, T. Koschny, C.M. Soukoulis, Phys. Rev. B 73, 041101R (2006)

    Article  ADS  Google Scholar 

  16. F. Costa, S. Genovesi, A. Monorchio, G. Manara, IEEE Trans. Antennas Propag. 61(3), 1201–1208 (2013)

    Article  ADS  Google Scholar 

  17. F. Costa, A. Monorchio, IEEE Trans. Antennas Propag. 60(10), 4650–4660 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  18. Y. Pang, H. Cheng, Y. Zhou, J. Wang, J. Appl. Phys. 113(11), 114902 (2013)

    Article  ADS  Google Scholar 

  19. C.G. Hu, X. Li, Q. Feng, X. Chen, X.G. Luo, Opt. Express 18(7), 6598–6603 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

This work was supported through the Basic Research Program of the National Research Foundation of Korea (Grant Number: 2013R1A1A2A10005073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, JH., Liu, T. & Kim, SS. Numerical analysis of complex impedance and microwave absorption of metamaterials composed of split cut wires on grounded dielectric substrate. Appl. Phys. A 117, 1401–1407 (2014). https://doi.org/10.1007/s00339-014-8562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8562-5

Keywords

Navigation