Skip to main content
Log in

Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials

基于多重嵌套方形开口环超材料的可调谐左手特性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Left-hand materials have drawn increasing attention from many disciplines and found widespread application, especially in microwave engineering. A sandwiched metamaterial consisting of multi-nested square-split-ring resonators on the top side and a set of wires on the back side is proposed. Scattering parameters are retrieved by high-frequency structure simulator (HFSS) software based on the finite element method. Effects of square-split-ring number on the left-hand characteristics containing negative values of permittivity, permeability, and refractive index have been intensively investigated. Simulated results show that obvious resonant left-hand characteristics could be observed within 8–18 GHz, and the resonant frequency counts are inclined to be in direct proportion to the square-split-ring number over 8–18 GHz. Besides, the proposed sandwiched metamaterial with three square-split-ring resonators and three wires presents the widest frequency band of left-hand characteristics in a range of 8–18 GHz. Further, electromagnetic field distributions demonstrated that the induced magnetic dipole dominates the resonant absorption. The multi-peak resonance characteristics of square-split-ring resonant structure are considered to be a promising candidate for selective-frequency absorption or modulation toward microwave frequency band.

摘要

具有左手特性的超材料因具有超常物理特性近年来倍受关注,在微波工程领域也具有重要应用 价值.本文设计了一种由多重嵌套方形开口环和一组平行金属线构成的夹芯结构超材料,采用有限元 全波仿真软件HFSS 系统研究了多重嵌套方形开口环数量对介电常数,磁导率和折射率的影响规律. 结果表明,该超材料在8∼18 GHz 范围内的散射参数(S11S21)具有显著的谐振特性,其内禀电磁参量 也呈现出典型的双负左手特性,并得到了实验验证;且随着多重嵌套方形开口环数量的增加,其谐振 峰数量也增加,当开口环数量为3 时具有最大的有效频率带宽;进一步分析电磁场分布发现感应磁偶 极子是导致强吸收的主要机制.这种结构简单,频率可调谐的超材料在选择性微波吸收材料和微波调 制器件中具有广阔的应用前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Lian-lin, CUI Tie-jun. Information metamaterials—From effective media to real-time information processing systems [J]. Nanophotonics, 2019, 8(5): 703–724. DOI: https://doi.org/10.1515/nanoph-2019-0006.

    Article  Google Scholar 

  2. LIU Bo, SONG Ke-rui, XIAO Jiang-nan. Two-dimensional optical metasurfaces: From plasmons to dielectrics [J]. Advances in Condensed Matter Physics, 2019. DOI: https://doi.org/10.1155/2019/2329168.

  3. CUI Tie-jun, LIU Shuo, ZHANG Lei. Information metamaterials and metasurfaces [J]. Journal of Materials Chemistry C, 2017, 5(15): 3644–3668. DOI: https://doi.org/10.1039/c7tc00548b.

    Article  Google Scholar 

  4. ASHRAF F B, ALAM T, ISLAM M T. A printed Xi-shaped left-handed metamaterial on low-cost flexible photo paper [J]. Materials, 2017: 10(7): 752–760. DOI: https://doi.org/10.3390/ma10070752.

    Article  Google Scholar 

  5. SUN Xue-cong, JIA Han, ZHANG Zhe, YANG Yu-zhen, SUN Zhao-yong, YANG Jun. Sound localization and separation in three-dimensional space using a single microphone with a metamaterial enclosure [J]. Advanced Science, 2020, 7(3): 1902271. DOI: https://doi.org/10.1002/advs.201902271.

    Article  Google Scholar 

  6. JI Jin-zu, JIANG Jia-xin, CHEN Guo-xu, LIU Fei-liang, MA Yun-peng. Research on monostatic and bistatic RCS of cloaking based on coordinate transformation [J]. Optik, 2018, 1: 117–123. DOI: https://doi.org/10.1016/j.ijleo.2018.03.063.

    Article  Google Scholar 

  7. WU D M, SOLOMON M L, NAIK G V, GARCIA-ETXARRI A, LAWRENCE M, SALLEO A, DIONNE J A. Chemically responsive elastomers exhibiting unity-order refractive index modulation [J]. Advanced Materials, 2018, 30(7): 1703912. DOI: https://doi.org/10.1002/adma.201703912.

    Article  Google Scholar 

  8. AMMARI H, WU Wei, YU Sanghyeon. Double-negative electromagnetic metamaterials due to chirality [J]. Quarterly of Applied Mathematics, 2018, 77(1): 105–130. DOI: https://doi.org/10.1090/qam/1516.

    Article  MathSciNet  MATH  Google Scholar 

  9. AL A, ENGHETA N. Anomalies of subdiffractive guided wave propagation along metamaterial nanocomponents [J]. Radio Science, 2007, 42(6): 1–9. DOI: https://doi.org/10.1029/2007rs003691.

    Google Scholar 

  10. BURGNIES L, LHEURETTE É, LIPPENS D. Textile inspired flexible metamaterial with negative refractive index [J]. Journal of Applied Physics, 2015, 117(14): 144506. DOI: https://doi.org/10.1063/1.4918314.

    Article  Google Scholar 

  11. ZHANG Lei, LIU Shuo, CUI Tie-jun. Theory and application of coding metamaterials [J]. Chinese Optics, 2017, 10(1): 1–12. DOI: https://doi.org/10.3788/co.20171001.0001.

    Article  Google Scholar 

  12. SMITH D R, PADILLA W J, VIER D C, NEMAT-NASSER S C, SCHULTZ S. Composite medium with simultaneously negative permeability and permittivity [J]. Physical Review Letters, 2000, 84(18): 4184–4187. DOI: https://doi.org/10.1103/PhysRevLett.84.4184.

    Article  Google Scholar 

  13. AYDIN K, GUVEN K, KAFESAKI M, ZHANG L, SOUKOULIS C M, OZBAY E. Experimental observation of true left-handed transmission peaks in metamaterials [J]. Optics Letters, 2004, 29(22): 2623–2625. DOI: https://doi.org/10.1364/ol.29.002623.

    Article  Google Scholar 

  14. ZHAO Yan-hui, NAWAZ A A, LIN S C S, HAO Qing-zhen, KIRALY B, HUANG T J. Nanoscale super-resolution imaging via a metal-dielectric metamaterial lens system [J]. Journal of Physics D: Applied Physics, 2011, 44(41): 415101. DOI: https://doi.org/10.1088/0022-3727/44/41/415101.

    Article  Google Scholar 

  15. UPPUTURI P K, PRAMANIK M. Microsphere-aided optical microscopy and its applications for super-resolution imaging [J]. Optics Communications, 2017, 1: 32–41. DOI: https://doi.org/10.1016/j.optcom.2017.05.049.

    Article  Google Scholar 

  16. XU Hui, LI Hong-jian, HE Zhi-hui, CHEN Zhi-quan, ZHENG Ming-fei, ZHAO Ming-zhuo. Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial [J]. Optics Communications, 2018, 1: 250–254. DOI: https://doi.org/10.1016/j.optcom.2017.09.046.

    Article  Google Scholar 

  17. LANDY N I, SAJUYIGBE S, MOCK J J, SMITH D R, PADILLA W J. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100(20): 207402. DOI: https://doi.org/10.1103/PhysRevLett.100.207402.

    Article  Google Scholar 

  18. HE Long-hui, DENG Lian-wen, LUO Heng, HE Jun, LI Yu-han, XU Yun-chao, HUANG Sheng-xiang. Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial [J]. Chinese Physics B, 2018, 27(12): 127801. DOI: CNKI:SUN:ZGWL.0.2018-12-070.

    Article  Google Scholar 

  19. HE Long-hui, DENG Lian-wen, LI Yu-han, LUO Heng, HE Jun, HUANG Sheng-xiang, CHEN Hong. Wide-angle microwave absorption performance of polyurethane foams combined with cross-shaped metamaterial absorber [J]. Results in Physics, 2018, 1: 769–776. DOI: https://doi.org/10.1016/j.rinp.2018.10.021.

    Article  Google Scholar 

  20. HUANG Hai-long, XIA Hui, GUO Zhi-bo, HUANG Sheng-xiang, LI Hong-jian, WU Yi-shan. A polarization-independent and broadband microwave metamaterial absorber based on three-dimensional structure [J]. Journal of Modern Optics, 2018, 65(13): 1521–1528. DOI: https://doi.org/10.1080/09500340.2018.1455911.

    Article  MathSciNet  Google Scholar 

  21. HUANG Mu-lin, CHENG Yong-zhi, CHENG Zheng-ze, CHEN Hao-ran, MAO Xue-song, GONG Rong-zhou. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle [J]. Optics Communications, 2018, 1: 194–201. DOI: https://doi.org/10.1016/j.optcom.2018.01.051.

    Article  Google Scholar 

  22. LI Ao-bo, ZHAO Xiao-guang, DUAN Guang-wu, ANDERSON S, ZHANG Xin. Metamaterials: Diatom frustule-inspired metamaterial absorbers: The effect of hierarchical pattern arrays [J]. Advanced Functional Materials, 2019, 29(22): 1970151. DOI: https://doi.org/10.1002/adfm.201970151.

    Article  Google Scholar 

  23. ZHANG Bai-hui, LI Hong-jian, XU Hui, ZHAO Ming-zhuo, XIONG Cui-xiu, LIU Chao, WU Kuan. Absorption and slow-light analysis based on tunable plasmon-induced transparency in patterned graphene metamaterial [J]. Optics Express, 2019, 27(3): 3598–3608. DOI: https://doi.org/10.1364/oe.27.003598.

    Article  Google Scholar 

  24. AMANATIADIS S A, KARAMANOS T D, KANTARTZIS N V. Radiation efficiency enhancement of graphene THz antennas utilizing metamaterial substrates [J]. IEEE Antennas and Wireless Propagation Letters, 2017, 1: 2054–2057. DOI: https://doi.org/10.1109/LAWP.2017.2695521.

    Article  Google Scholar 

  25. SCHURIG D, MOCK J J, JUSTICE B J, CUMMER S A, PENDRY J B, STARR A F, SMITH D R. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006, 314(5801): 977–80. DOI: https://doi.org/10.1126/science.1133628.

    Article  Google Scholar 

  26. ZHANG Fu-li, LI Chang, FAN Yuan-cheng, YANG Rui-sheng, SHEN Nian-hai, FU Quan-hong, ZHANG Wei-hong, ZHAO Qian, ZHOU Ji, KOSCHNY T, SOUKOULIS C M. Phase-modulated scattering manipulation for exterior cloaking in metal-dielectric hybrid metamaterials [J]. Advanced Materials, 2019, 31(39): 1903206. DOI: https://doi.org/10.1002/adma.201903206.

    Article  Google Scholar 

  27. LIN Yu-sheng, LIAO Shao-quan, LIU Xiao-yan, TONG Yan-lin, XU Ze-feng, XU Rui-jia, YAO Dong-yuan, YU Yang-bin. Tunable terahertz metamaterial by using three-dimensional double split-ring resonators [J]. Optics & Laser Technology, 2019, 1: 215–221. DOI: https://doi.org/10.1016/j.optlastec.2018.11.020.

    Article  Google Scholar 

  28. XU Hui, ZHAO Ming-zhuo, CHEN Zhi-quan, ZHENG Ming-fei, XIONG Cui-xiu, ZHANG Bai-hui, LI Hong-jian. Sensing analysis based on tunable Fano resonance in terahertz graphene-layered metamaterials [J]. Journal of Applied Physics, 2018, 123(20): 203103. DOI: https://doi.org/10.1063/1.5029546.

    Article  Google Scholar 

  29. XU Hui, XIONG Cui-xiu, CHEN Zhi-quan, ZHENG Ming-fei, ZHAO Ming-zhuo, ZHANG Bai-hui, LI Hong-jian. Dynamic plasmon-induced transparency modulator and excellent absorber-based terahertz planar graphene metamaterial [J]. Journal of the Optical Society of America B-Optical Physics, 2018, 35(6): 1463–1468. DOI: https://doi.org/10.1364/josab.35.001463.

    Article  Google Scholar 

  30. XU Hui, LI Hong-jian, CHEN Zhi-quan, ZHENG Ming-fei, ZHAO Ming-zhuo, XIONG Cui-xiu, ZHANG Bai-hui. Novel tunable terahertz graphene metamaterial with an ultrahigh group index over a broad bandwidth [J]. Applied Physics Express, 2018, 11(4): 042003. DOI: https://doi.org/10.7567/apex.11.042003.

    Article  Google Scholar 

  31. LI Dan, HUANG Hai-long, XIA Hui, ZENG Jian-ping, LI Hong-jian, XIE Ding. Temperature-dependent tunable terahertz metamaterial absorber for the application of light modulator [J]. Results in Physics, 2018, 1: 659–664. DOI: https://doi.org/10.1016/j.rinp.2018.10.014.

    Article  Google Scholar 

  32. VISHAL SORATHIYA V D. Numerical study of a high negative refractive index based tunable metamaterial structure by graphene split ring resonator for far infrared frequency [J]. Optics Communications, 2020, 1: 124581. DOI: https://doi.org/10.1016/j.optcom.2019.124581.

    Article  Google Scholar 

  33. CHEN Tian-yi, TANG Wen-xuan, MU Jing, CUI Tie-jun, Microwave metamaterials [J]. Annalen Der Physik, 2019, 531(8): 1800445. DOI: https://doi.org/10.1002/andp.201800445.

    Article  MathSciNet  Google Scholar 

  34. HUANG Hai-long, XIA Hui, XIAN Wen-ke, GUO Zhi-bo, LI Hong-jian. Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions [J]. Results in Physics, 2018, 1: 1310–1316. DOI: https://doi.org/10.1016/j.rinp.2018.04.048.

    Article  Google Scholar 

  35. LEI Kang, DIDIER Lippens. Mie resonance based left-handed metamaterial in the visible frequency range [J]. Physical Review B, 2011, 83(19): 195125. DOI: https://doi.org/10.1103/PhysRevB.83.195125.

    Article  Google Scholar 

  36. XIONG Yi-jun, WANG Yan, WANG Qiang, WANG Chun-qi, HUANG Xiao-zhong, ZHANG Fen, ZHOU Ding. Structural broadband absorbing metamaterial based on three-dimensional printing technology [J]. Acta Physica Sinica, 2018, 67(8): 084202. DOI: https://doi.org/10.7498/aps.67.20172262. (in Chinese)

    Google Scholar 

  37. WU Lin, YANG Zhen-yu, ZHAO Ming, ZHENG Yu, DUAN Ji-an, YUAN Xiu-hua. Polarization-insensitive resonances with high quality-factors in meta-molecule metamaterials [J]. Optics Express, 2014, 22(12): 14588–14593. DOI: https://doi.org/10.1364/oe.22.014588.

    Article  Google Scholar 

  38. TANG Wen-xuan, CUI Tie-jun. The engineering way from spoof surface plasmon polaritons to radiations [J]. EPJ Applied Metamaterials, 2019, 1: 9. DOI: https://doi.org/10.1051/epjam/2019007.

    Article  Google Scholar 

  39. LIU Shuo, CUI Tie-jun. Concepts, working principles, and applications of coding and programmable metamaterials [J]. Advanced Optical Materials, 2017, 5(22): 1700624. DOI: https://doi.org/10.1002/adom.201700624.

    Article  Google Scholar 

  40. PARAZZOLI C G, GREEGOR R B, LI K, KOLTENBAH B E, TANIELIAN M. Experimental verification and simulation of negative index of refraction using Snell’s law [J]. Physical Review Letters, 2003, 90(10): 107401. DOI: https://doi.org/10.1103/PhysRevLett.90.107401.

    Article  Google Scholar 

  41. SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction [J]. Science, 2001, 292(5514): 77–79. DOI: https://doi.org/10.1126/science.1058847.

    Article  Google Scholar 

  42. HINDY M A, ELSAGHEER R M, YASSEEN M S. Experimental retrieval of the negative parameters “permittivity and permeability” based on a circular split ring resonator (CSRR) left handed metamaterial [J]. Journal of Electrical Systems and Information Technology, 2018, 5(2): 208–215. DOI: https://doi.org/10.1016/j.jesit.2017.05.004.

    Article  Google Scholar 

  43. SMITH D R, VIER D C, KOSCHNY T, SOUKOULIS C M. Electromagnetic parameter retrieval from inhomogeneous metamaterials [J]. Physical Review E: Stat Nonlin Soft Matter Phys, 2005, 71(3): 036617. DOI: https://doi.org/10.1103/PhysRevE.71.036617.

    Article  Google Scholar 

  44. HUANG Hai-long, XIA Hui, XIE Wen-ke, GUO Zhi-bo, LI Hong-jian. Design of a size-efficient tunable metamaterial absorber based on leaf-shaped cell at near-infrared regions [J]. Results in Physics, 2018, 1: 1310–1316. DOI: https://doi.org/10.1016/j.rinp.2018.04.048.

    Article  Google Scholar 

  45. CHENG Yong-zhi, GONG Rong-zhou, WU Lin. Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves [J]. Plasmonics, 2017, 12(4): 1113–1120. DOI: https://doi.org/10.1007/s11468-016-0365-4.

    Article  Google Scholar 

  46. XIA Sheng-xuan, ZHAI Xiang, HUANG Yu, LIU Jian-qiang, WANG Ling-ling, WEN Shuang-chun. Multi-band perfect plasmonic absorptions using rectangular graphene gratings [J]. Optics letters, 2017, 42(15): 3052–3055. DOI: https://doi.org/10.1364/ol.42.003052.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Luo  (罗衡).

Additional information

Foundation item: Project(2017YFA0204600) supported by the National Key Research and Development Program of China; Project(51802352) supported by the National Natural Science Foundation of China; Project(2019JJ50768) supported by the Natural Science Foundation of Hunan Province of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulkarim, Y.I., Deng, Lw., Yang, Jl. et al. Tunable left-hand characteristics in multi-nested square-split-ring enabled metamaterials. J. Cent. South Univ. 27, 1235–1246 (2020). https://doi.org/10.1007/s11771-020-4363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4363-5

Key words

关键词

Navigation