Skip to main content
Log in

Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel approach was developed to fabricate a lotus-leaf-like superhydrophobic surface on a copper foil by simple self-assembly method with the assistance of the porous PDMS template which was used to adjust the oxidized parts of the copper foil surface before self-assembly. The results showed a series of beautiful flower-like microstructures resulting from the self-assembly of cupric stearate that were distributed at regular intervals on the as-prepared copper foil surface similar to the papillae of lotus leaf surface. The water contact angle of the as-prepared copper surface was up to 161° and its sliding angle was only 3°. Its great superhydrophobicity could be kept unchanged after 6 months in air. The formation mechanism of the lotus-leaf-like structure was discussed. This simple and low-cost method is expected to be applied to design and prepare complicated superhydrophobic surfaces with beautiful regular microstructures on different substrates such as stainless steel, zinc, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Barthlott, C. Neinhuis, Planta 202(1), 1–8 (1997)

    Article  Google Scholar 

  2. M.A. Samaha, H.V. Tafreshi, M. Gad-el-Hak, Comptes Rendus Mécanique 340(1–2), 18–34 (2012)

    Article  ADS  Google Scholar 

  3. E. Celia, T. Darmanin, E. Taffin de Givenchy, S. Amigoni, F. Guittard, J. Colloid Interface Sci. 402, 1–18 (2013)

    Article  Google Scholar 

  4. S. Dai, W. Ding, Y. Wang, D. Zhang, Z. Du, Thin Solid Films 519(16), 5523–5527 (2011)

    Article  ADS  Google Scholar 

  5. B. Bhushan, Y.C. Jung, Prog. Mater Sci. 56(1), 1–108 (2011)

    Article  Google Scholar 

  6. Z. Guo, W. Liu, B. Su, Colloid and Interface Science 353(2), 335–355 (2011)

    Article  ADS  Google Scholar 

  7. P. Peng, Q. Ke, G. Zhou, T. Tang, J. Colloid Interface Sci. 395, 326–328 (2013)

    Article  Google Scholar 

  8. B. Cortese, S. D’Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli, Langmuir 24, 2712–2718 (2008)

    Article  Google Scholar 

  9. Y. Goto, H. Takashima, K. Takishita, H. Sawada, J. Colloid Interface Sci. 362(2), 375–381 (2011)

    Article  Google Scholar 

  10. R.V. Lakshmi, T. Bharathidasan, B.J. Basu, Appl. Surf. Sci. 257(24), 10421–10426 (2011)

    Article  ADS  Google Scholar 

  11. X. Men, Z. Zhang, J. Yang, K. Wang, W. Jiang, Appl. Phys. A 98(2), 275–280 (2010)

    Article  ADS  Google Scholar 

  12. J. Song, W. Xu, Y. Lu, J. Mater. Sci. 47(1), 162–168 (2012)

    Article  ADS  Google Scholar 

  13. L. Li, V. Breedveld, D.W. Hess, ACS applied materials & interfaces 4(9), 4549–4556 (2012)

    Article  Google Scholar 

  14. J. Wang, A. Li, H. Chen, D. Chen, J. Bionic Eng. 8(2), 122–128 (2011)

    Article  Google Scholar 

  15. M. Zhu, W. Zuo, H. Yu, W. Yang, Y. Chen, J. Mater. Sci. 41(12), 3793–3797 (2006)

    Article  ADS  Google Scholar 

  16. S.K. Papadopoulou, C. Tsioptsias, A. Pavlou, K. Kaderides, S. Sotiriou, C. Panayiotou, Colloids Surf., A 387(1–3), 71–78 (2011)

    Article  Google Scholar 

  17. T.M. Schutzius, M.K. Tiwari, I.S. Bayer, C.M. Megaridis, Compos. A Appl. Sci. Manuf. 42(8), 979–985 (2011)

    Article  Google Scholar 

  18. S. Dai, D. Zhang, Q. Shi, X. Han, S. Wang, Z. Du, CrystEngComm 15(27), 5417–5424 (2013)

    Article  Google Scholar 

  19. X. Jin, S. Yang, Z. Li, K. Liu, L. Jiang, Science China Chemistry 55(11), 2327–2333 (2012)

    Article  ADS  Google Scholar 

  20. S. Yin, D. Wu, J. Yang, S. Lei, T. Kuang, B. Zhu, Appl. Surf. Sci. 257(20), 8481–8485 (2011)

    Article  ADS  Google Scholar 

  21. S. Chen, B. Guo, W. Wu, Appl. Phys. A 105(4), 861–866 (2011)

    Article  ADS  Google Scholar 

  22. N. Zhao, F. Shi, Z. Wang, X. Zhang, Langmuir 21(10), 4713–4716 (2005)

    Article  Google Scholar 

  23. Y. Zhu, D. Hu, M.X. Wan, L. Jiang, Y. Wei, Adv. Mater. 19(16), 2092–2096 (2007)

    Article  Google Scholar 

  24. J. Li, X. Liu, Y. Ye, H. Zhou, J. Chen, Appl. Surf. Sci. 258(5), 1772–1775 (2011)

    Article  ADS  Google Scholar 

  25. S. Wang, L. Feng, L. Jiang, Adv. Mater. 18(6), 767–770 (2006)

    Article  Google Scholar 

  26. Jonathan Wood, Mater. Today 8(10), 15 (2005)

    Google Scholar 

  27. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen, Langmuir 21, 8978–8981 (2005)

    Article  Google Scholar 

  28. M.M. Stanton, R.E. Ducker, J.C. MacDonald, C.R. Lambert, W.G. McGimpsey, J. Colloid Interface Sci. 367(1), 502–508 (2012)

    Article  Google Scholar 

  29. J. Li, X. Liu, Y. Ye, H. Zhou, J. Chen, Mater. Lett. 66(1), 321–323 (2012)

    Article  Google Scholar 

  30. J. Li, H. Wan, Y. Ye, H. Zhou, J. Chen, Appl. Surf. Sci. 258(7), 3115–3118 (2012)

    Article  ADS  Google Scholar 

  31. Z. Wang, J. Che, C. Ye, Hydrometallurgy 105(1–2), 69–74 (2010)

    Article  Google Scholar 

  32. Z. Yuan, X. Wang, J. Bin, C. Peng, S. Xing, M. Wang, J. Xiao, J. Zeng, Y. Xie, X. Xiao, X. Fu, H. Gonga, D. Zhao, Appl. Surf. Sci. 285(Part B), 205–210 (2013)

    Article  ADS  Google Scholar 

  33. B.J. Basu, J. Manasa, J. Colloid Interface Sci. 363(2), 655–662 (2011)

    Article  Google Scholar 

  34. N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, Langmuir 21(3), 937–943 (2005)

    Article  Google Scholar 

  35. A. Cassie, S. Baxter, Trans. Faraday Soc. 40(5), 546–551 (1944)

    Article  Google Scholar 

  36. D. Torresin, M.K. Tiwari, D. Del Col, D. Poulikakos, Langmuir 29(2), 840–848 (2013)

    Article  Google Scholar 

  37. Y. Huang, D.K. Sarkar, X.G. Chen, Mater. Lett. 64(24), 2722–2724 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Natural Science Foundation of China (Nos. 51103036, 51203183), the Natural Science Foundation of Hunan province (Nos. 10JJ4033, 11JJ3047), the Youth Foundation of Hunan Educational Committee (No. 11B035), and the Science Foundation of Hunan University of Technology (No. 2011HZX06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Z., Wang, X., Bin, J. et al. Controllable fabrication of lotus-leaf-like superhydrophobic surface on copper foil by self-assembly. Appl. Phys. A 116, 1613–1620 (2014). https://doi.org/10.1007/s00339-014-8472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8472-6

Keywords

Navigation