Skip to main content
Log in

Pulsed-laser generation of gold nanoparticles with on-line surface plasmon resonance detection

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Size of nanoparticles is an important parameter for their applications. The real-time monitoring is required for reliable and reproducible production of nanoparticles with controllable size. We present results of our research on development of the system for the online nanoparticle characterization during their production by a laser. The laser ablation chamber which allows measurements of surface plasmon resonance spectra during the nanoparticle generation process has been designed and fabricated. The online characterization system was tested by producing and modification of gold nanoparticles. Nanoparticles were generated by nanosecond-laser (wavelength 1064 nm) ablation of gold target in deionized water, and optimal conditions for the highest nanoparticle productivity were estimated. The mean diameter of nanoparticles was determined using their absorption spectra measured in the real-time during the ablation experiments and from the TEM images analysis, and it varied from 20 to 45 nm. The mismatch between nanoparticle diameters, estimated using these two methods, is due to the polydispersity of the generated nanoparticles. The further experiments of laser-induced modification of colloidal gold nanoparticles were carried out using second harmonic (wavelength 532 nm) of nanosecond Nd:YAG laser and alteration in nanoparticle size were acquired by the online measurement system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Mafuné, J.-Y. Kohno, Y. Takeda, T. Kondow, J. Phys. Chem. B 105(38), 9050 (2001)

    Article  Google Scholar 

  2. S. Paul, D. Paul, G.R. Fern, A.K. Ray, J. R. Soc. Interface 8(61), 1204 (2011)

    Article  Google Scholar 

  3. S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A, Mater. Sci. Process. 87(1), 47 (2007)

    Article  ADS  Google Scholar 

  4. A. Rao, M. Schoenenberger, E. Gnecco, G. Th, E. Meyer, D. Brändlin, L. Scandella, J. Phys. Conf. Ser. 61(1), 971 (2007)

    Article  ADS  Google Scholar 

  5. P.K. Jain, K.S. Lee, I.H. El-Sayed, M.A. El-Sayed, J. Phys. Chem. B 110(14), 7238 (2006)

    Article  Google Scholar 

  6. M. Muniz-Miranda, C. Gellini, E. Giorgetti, J. Phys. Chem. C 115(12), 5021 (2011)

    Article  Google Scholar 

  7. N.V. Tarasenko, A.V. Butsen, E.A. Nevar, Appl. Surf. Sci. 247(1–4), 418 (2005)

    Article  ADS  Google Scholar 

  8. J. Neddersen, G. Chumanov, T.M. Cotton, Appl. Spectrosc. 47(12), 1959 (1993)

    Article  ADS  Google Scholar 

  9. K. Kneipp, H. Kneipp, J. Kneipp, Acc. Chem. Res. 39(7), 443 (2006)

    Article  Google Scholar 

  10. S. Kokura, O. Handa, T. Takagi, T. Ishikawa, Y. Naito, T. Yoshikawa, Nanomedicine 6(4), 570 (2010)

    Article  Google Scholar 

  11. L. Du, H. Song, S. Liao, Microporous Mesoporous Mater. 147(1), 200 (2012)

    Article  Google Scholar 

  12. T.E. Itina, J. Phys. Chem. C 115(12), 5044 (2010)

    Article  Google Scholar 

  13. D. Riabinina, J. Zhang, M. Chaker, J. Margot, D. Ma, P. Tijssen, Appl. Phys. A, Mater. Sci. Process. 102(1), 153 (2011)

    Article  ADS  Google Scholar 

  14. X.Z. Wang, L. Liu, R.F. Li, R.J. Tweedie, K. Primrose, J. Corbett, F.K. McNeil-Watson, Chem. Eng. Res. Des. 87(6), 874 (2009)

    Article  Google Scholar 

  15. F. Mafuné, Chem. Phys. Lett. 397(1–3), 133 (2004)

    Article  ADS  Google Scholar 

  16. W. Haiss, N.T.K. Thanh, J. Aveyard, D.G. Fernig, Anal. Chem. 79(11), 4215 (2007)

    Article  Google Scholar 

  17. S. Eustis, M.A. El-Sayed, Chem. Soc. Rev. 35(3), 209 (2006)

    Article  Google Scholar 

  18. D.D. Evanoff, G. Chumanov, ChemPhysChem 6(7), 1221 (2005)

    Article  Google Scholar 

  19. K. Yamada, K. Miyajima, F. Mafuné, J. Phys. Chem. C 111(30), 11246 (2007)

    Article  Google Scholar 

  20. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103(21), 4212 (1999)

    Article  Google Scholar 

  21. S. Link, M.A. El-Sayed, Int. Rev. Phys. Chem. 19(3), 409 (2000)

    Article  Google Scholar 

  22. T. Ung, L.M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B 105(17), 3441 (2001)

    Article  Google Scholar 

  23. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, J. Phys. Chem. B 101(19), 3706 (1997)

    Article  Google Scholar 

  24. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48(24), 18178 (1993)

    Article  ADS  Google Scholar 

  25. C.F. Bohren, D.R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983), pp. 82–129

    Google Scholar 

  26. T.-B. Hur, T.X. Phuoc, M.K. Chyu, V.N. Romanov, J. Appl. Phys. 112(6), 063113 (2012)

    Article  ADS  Google Scholar 

  27. P.N. Njoki, I.I.S. Lim, D. Mott, H.-Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo, C.-J. Zhong, J. Phys. Chem. C 111(40), 14664 (2007)

    Article  Google Scholar 

  28. N.G. Khlebtsov, Anal. Chem. 80(17), 6620 (2008)

    Article  Google Scholar 

  29. S. Barcikowski, A. Menendez-Manjon, B. Chichkov, M. Brikas, G. Raciukaitis, Appl. Phys. Lett. 91(8), 083113 (2007)

    Article  ADS  Google Scholar 

  30. A. Menẽndez-Manjón, P. Wagener, S. Barcikowski, J. Phys. Chem. C 115(12), 5108 (2011)

    Article  Google Scholar 

  31. W. Soliman, N. Takada, K. Sasaki, Appl. Phys. Express 3, 035201 (2010). Copyright (c) 2010 The Japan Society of Applied Physics

    Article  ADS  Google Scholar 

  32. A. Henglein, J. Phys. Chem. 97(21), 5457 (1993)

    Article  Google Scholar 

  33. H. Fujiwara, S. Yanagida, P.V. Kamat, J. Phys. Chem. B 103(14), 2589 (1999)

    Article  Google Scholar 

  34. S. Inasawa, M. Sugiyama, Y. Yamaguchi, J. Phys. Chem. B 109(19), 9404 (2005)

    Article  Google Scholar 

  35. A. Takami, H. Kurita, S. Koda, J. Phys. Chem. B 103(8), 1226 (1999)

    Article  Google Scholar 

  36. D. Werner, S. Hashimoto, T. Uwada, Langmuir 26(12), 9956 (2010)

    Article  Google Scholar 

  37. F. Giammanco, E. Giorgetti, P. Marsili, A. Giusti, J. Phys. Chem. C 114(8), 3354 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Council of Lithuania under grant No TAP LB 12/2012 and by the Belarusian Foundation for Fundamental Research under grant F11LIT-009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mindaugas Maciulevičius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciulevičius, M., Vinčiūnas, A., Brikas, M. et al. Pulsed-laser generation of gold nanoparticles with on-line surface plasmon resonance detection. Appl. Phys. A 111, 289–295 (2013). https://doi.org/10.1007/s00339-012-7535-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7535-9

Keywords

Navigation