Skip to main content
Log in

Rolled-Up Ag-SiOx Hyperbolic Metamaterials for Surface-Enhanced Raman Scattering

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A convenient technique is reported to fabricate Ag-SiOx hyperbolic metamaterials (HMMs) as robust surface-enhanced Raman scattering (SERS) substrates based on roll-up nanotechnology. As an illustration, dramatic enhancement is achieved using Rhodamine 6G as a molecular probe, which indicates that a larger plasmonic density of states exist, leading to a greatly enhanced local electromagnetic (EM) field when the sample is irradiated with a laser beam. Optimized results are obtained by controlling the thickness of alumina coating onto Ag-SiOx HMMs using atomic layer deposition. Finite-difference time-domain simulations further illustrate the excitation of localized surface plasmon modes by calculating the EM field properties on the surface of Ag-SiOx HMMs. This efficient method of producing Ag-SiOx HMMs with highly SERS-active properties could spur expanding applications in metamaterials and bioanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pendry JB (2004) A chiral route to negative refraction. Science 306(5700):1353–1355

    Article  CAS  Google Scholar 

  2. Liu ZW, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315(5819):1686

    Article  CAS  Google Scholar 

  3. Smith EJ, Liu ZW, Mei YF, Schmidt OG (2010) Combined surface plasmon and classical waveguiding through metamaterial fiber design. Nano Lett 10(1):1–5

    Article  CAS  Google Scholar 

  4. Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon 5:523–530

    CAS  Google Scholar 

  5. Hess O, Pendry JB, Maier SA, Oulton RF, Hamm JM, Tsakmakidis KL (2012) Active nanoplasmonic metamaterials. Nat Mater 11:573–584

    Article  CAS  Google Scholar 

  6. Tumkur T, Zhu G, Black P, Barnakov YA, Bonner CE, Noginov MA (2011) Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl Phys Lett 99:151115

    Article  Google Scholar 

  7. Krishnamoorthy HNS, Jacob Z, Narimanov E, Kretzschmar I, Menon VM (2012) Topological transitions in metamaterials. Science 336(6078):205–209

    Article  CAS  Google Scholar 

  8. Kim J, Drachev VP, Jacob Z, Naik GV, Boltasseva A, Narimanov EE, Shalaev VM (2012) Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt Express 20:8100–8116

    Article  CAS  Google Scholar 

  9. Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Hyperbolic metamaterials. Nat Photon 7:958–967

    Article  Google Scholar 

  10. Lu D, Kan JJ, Fullerton EE, Liu ZW (2014) Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat Nanotech 9:48–53

    Article  CAS  Google Scholar 

  11. Sechrist ZA, Tonucci RJ, Cambrea LR (2013) Stabilization of center frequency nanowell metamaterials for SERS applications. Appl Phys B 112:133–142

    Article  CAS  Google Scholar 

  12. Prokes SM, Glembocki OJ, Livenere JE, Tumkur TU, Kitur JK, Zhu G, Wells B, Podolskiy VA, Noginov MA (2013) Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays. Opt Express 21:14962–14974

    Article  CAS  Google Scholar 

  13. Schmidt OG, Eberl K (2001) Nanotechnology: thin solid films roll up into nanotubes. Nature 410:168

    Article  CAS  Google Scholar 

  14. Cavallo F, Songmuang R, Schmidt OG (2008) Fabrication and electrical characterization of Si-based rolled-up microtubes. Appl Phys Lett 93:143113

    Article  Google Scholar 

  15. Müller C, Khatri MS, Deneke C, Fähler S, Mei YF, Urena EB, Schmidt OG (2009) Tuning magnetic properties by roll-up of Au/Co/Au films into microtubes. Appl Phys Lett 94:102510

    Article  Google Scholar 

  16. Deneke C, Schmidt OG (2004) Real-time formation, accurate positioning, and fluid filling of single rolled-up nanotubes. Appl Phys Lett 85:2914–2916

    Article  CAS  Google Scholar 

  17. Thurmer DJ, Deneke C, Mei YF, Schmidt OG (2006) Process integration of microtubes for fluidic applications. Appl Phys Lett 89:223507

    Article  Google Scholar 

  18. Deneke C, Schmidt OG (2006) Structural characterization and potential x-ray waveguiding of a small rolled-up nanotube with a large number of windings. Appl Phys Lett 89:123121

    Article  Google Scholar 

  19. Schwaiger S, Bröll M, Krohn A, Stemmann A, Heyn C, Stark Y, Stickler D, Heitmann D, Mendach S (2009) Rolled-up three-dimensional metamaterials with a tunable plasma frequency in the visible regime. Phys Rev Lett 102:163903

    Article  Google Scholar 

  20. Yin Y, Qiu T, Ma L, Lang XZ, Zhang Y, Huang GS, Mei YF, Schmidt OG (2012) Exploring rolled-up Au–Ag bimetallic microtubes for surface enhanced Raman scattering sensor. J Phys Chem C 116(48):25504–25508

    Article  CAS  Google Scholar 

  21. Songmuang R, Deneke C, Schmidt OG (2006) Rolled-up micro- and nanotubes from single-material thin films. Appl Phys Lett 89:223109

    Article  Google Scholar 

  22. Mei YF, Huang GS, Solovev AA, Ureña EB, Mönch I, Ding F, Reindl T, Fu RKY, Chu PK, Schmidt OG (2008) Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv Mater 20:4085–4090

    Article  CAS  Google Scholar 

  23. Huang GS, Kiravittaya S, Bolaños Quiñones VA, Ding F, Benyoucef M, Rastelli A, Mei YF, Schmidt OG (2009) Optical properties of rolled-up tubular microcavities from shaped nanomembranes. Appl Phys Lett 94:141901

    Article  Google Scholar 

  24. Huang GS, Mei YF (2012) Thinning and shaping solid films into functional and integrative nanomembranes. Adv Mater 24:2517–2546

    Article  CAS  Google Scholar 

  25. Wan GJ, Solovev AA, Huang GS, Maitz MF, Huang N, Mei YF (2012) Dynamic curvature control of rolled-up metal nanomembranes activated by magnesium. J Mater Chem 22:12983–12987

    Article  CAS  Google Scholar 

  26. Qiu T, Zhang WJ, Lang XZ, Zhou YJ, Cui TJ, Chu PK (2009) Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 5:2333–2337

    Article  CAS  Google Scholar 

  27. Kneipp K, Kneipp H, Kneipp J (2006) Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res 39(7):443–450

    Article  CAS  Google Scholar 

  28. Wang YQ, Yan B, Chen LX (2013) SERS tags: novel optical nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428

    Article  CAS  Google Scholar 

  29. Lawandy NW (2004) Localized surface plasmon singularities in amplifying media. Appl Phys Lett 85:5040–5042

    Article  CAS  Google Scholar 

  30. Noginov MA, Zhu G, Bahoura M, Adegoke J, Small CE (2006) Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt Lett 31:3022–3024

    Article  CAS  Google Scholar 

  31. See supplemental material for SERS enhancement factor calculation

  32. Kennedy BJ, Spaeth S, Dickey M, Carron KT (1999) Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols. J Phys Chem B 103(18):3640–3646

    Article  CAS  Google Scholar 

Download references

Acknowledgments

T.Q. acknowledges support from the National Natural Science Foundation of China under Grant No. 51271057, the Natural Science Foundation of Jiangsu Province, China, under Grant no. BK2012757 and the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant no. NCET-11-0096. Y.F.M. and G.S.H. thank the support from the Natural Science Foundation of China (nos. 51322201 and 51475093) and Science and Technology Commission of Shanghai Municipality (nos. 12520706300 and 14JC1400200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teng Qiu or Yongfeng Mei.

Additional information

Yan Zhang and Di Han contributed equally.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 1262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Han, D., Du, D. et al. Rolled-Up Ag-SiOx Hyperbolic Metamaterials for Surface-Enhanced Raman Scattering. Plasmonics 10, 949–954 (2015). https://doi.org/10.1007/s11468-015-9884-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9884-7

Keywords

Navigation