Skip to main content
Log in

Selective growth of ZnO nanowires on substrates patterned by photolithography and inkjet printing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide nanowires (ZnO NWs) were grown by a two-step growth method, involving the deposition of a patterned ZnO thin seeding layer and the chemical vapor deposition (CVD) of ZnO NWs. Two ways of patterning the seed layer were performed. The seeding solution containing ZnO precursors was deposited by sol–gel/spin-coating technique and patterned by photolithography. In the other case, the seeding solution was directly printed by inkjet printing only on selected portion of the substrate areas. In both cases, crystallization of the seed layer was achieved by thermal annealing in ambient air. Vertically aligned ZnO NWs were then grown by CVD on patterned, seeded substrates. The structure and morphology of ZnO NWs was analyzed by means of X-ray diffraction and field emission scanning electron microscopy measurements, respectively, while the vibrational properties were evaluated through Raman spectroscopy. Results showed that less-defective, vertically aligned, c-axis oriented ZnO NWs were grown on substrates patterned by photolithography while more defective nanostructures were grown on printed seed layer. A feature size of 30 µm was transferred into the patterned seed layer, and a good selectivity in growing ZnO NWs was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.L. Gomez, O. Tigli, J. Mater. Sci. 48, 612 (2013)

    Article  ADS  Google Scholar 

  2. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  3. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, Appl. Phys. Lett. 93, 263103 (2008)

    Article  ADS  Google Scholar 

  4. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, J.J. Delaunay, Nanotechnology 20, 045501 (2009)

    Article  ADS  Google Scholar 

  5. R. Könenkamp, R.C. Word, C. Schlegel, Appl. Phys. Lett. 85, 6004 (2004)

    Article  ADS  Google Scholar 

  6. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  7. X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z.L. Wang, Nano Lett. 6, 2768 (2006)

    Article  ADS  Google Scholar 

  8. P.X. Gao, J. Song, J. Liu, Z.L. Wang, Adv. Mater. 19, 67 (2007)

    Article  Google Scholar 

  9. Z.-M. Liao, J. Xu, J.-M. Zhang, D.-P. Yu, Appl. Phys. Lett. 93, 023111 (2008)

    Article  ADS  Google Scholar 

  10. D. Banerjee, S.H. Jo, Z.F. Ren, Adv. Mater. 16, 2028 (2004)

    Article  Google Scholar 

  11. Z. Liu, R. Zhu, G. Zhang, J. Phys. D Appl. Phys. 43, 155402 (2010)

    Article  ADS  Google Scholar 

  12. L.V. Podrezova, S. Porro, V. Cauda, M. Fontana, G. Cicero, Appl. Phys. A 113, 623 (2013)

    Article  ADS  Google Scholar 

  13. M. Zha, D. Calestani, A. Zappettini, R. Mosca, M. Mazzera, L. Lazzarini, L. Zanotti, Nanotechnology 19, 325603 (2008)

    Article  Google Scholar 

  14. M.T. Htay, Y. Hashimoto, N. Momose, K. Ito, J. Cryst. Growth 311, 4499 (2009)

    Article  ADS  Google Scholar 

  15. H.W. Kang, J. Yeo, J.O. Hwang, S. Hong, P. Lee, S.Y. Han, J.H. Lee, Y.S. Rho, S.O. Kim, S.H. Ko, H.J. Sung, J. Phys. Chem. C 115, 11435 (2011)

    Article  Google Scholar 

  16. S.-W. Kim, S. Fujita, S. Fujita, Appl. Phys. Lett. 86, 153119 (2005)

    Article  ADS  Google Scholar 

  17. M. Laurenti, V. Cauda, R. Gazia, M. Fontana, V. Farías Rivera, S. Bianco, G. Canavese, Eur. J. Inorg. Chem. 2013, 2520 (2013)

    Article  Google Scholar 

  18. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P. Yang, Nano Lett. 5, 1231 (2005)

    Article  ADS  Google Scholar 

  19. J.F. Conley Jr, L. Stecker, Y. Ono, Nanotechnology 16, 292 (2005)

    Article  ADS  Google Scholar 

  20. T.F. Chung, L.B. Luo, Z.B. He, Y.H. Leung, I. Shafiq, Z.Q. Yao, S.T. Lee, Appl. Phys. Lett. 91, 233112 (2007)

    Article  ADS  Google Scholar 

  21. D.H. Lee, K. Son, W.I. Park, J. Phys. D Appl. Phys. 43, 245402 (2010)

    Article  ADS  Google Scholar 

  22. R. Kitsomboonloha, S. Baruah, M.T.Z. Myint, V. Subramanian, J. Dutta, J. Cryst. Growth 311, 2352 (2009)

    Article  ADS  Google Scholar 

  23. S.H. Ko, D. Lee, N. Hotz, J. Yeo, S. Hong, K.H. Nam, C.P. Grigoropoulos, Langmuir 28, 4787 (2012)

    Article  Google Scholar 

  24. S. Shin, J. Park, Y. Seo, H. Jeong, J. Korean Phys. Soc. 53, 2011 (2008)

    Google Scholar 

  25. J. Yeo, S. Hong, M. Wanit, H.W. Kang, D. Lee, C.P. Grigoropoulos, H.J. Sung, S.H. Ko, Adv. Funct. Mater. 23, 3316 (2013)

    Article  Google Scholar 

  26. S. Hong, J. Yeo, W. Manorotkul, G. Kim, J. Kwon, K. An, S.H. Ko, J. Nanomater. 2013, 246328 (2013)

    Google Scholar 

  27. J.B. In, H.-J. Kwon, D. Lee, S.H. Ko, C.P. Grigoropoulos, Small 10, 741 (2014)

    Article  Google Scholar 

  28. J.S. Lloyd, C.M. Fung, D. Deganello, R.J. Wang, T.G.G. Maffeis, S.P. Lau, K.S. Teng, Nanotechnology 24, 195602 (2013)

    Article  ADS  Google Scholar 

  29. J. Kwon, S. Hong, H. Lee, J. Yeo, S.S. Lee, S.H. Ko, Nanoscale Res. Lett. 8, 489 (2013)

    Article  ADS  Google Scholar 

  30. H.W. Kang, J. Leem, S.H. Ko, S.Y. Yoon, H.J. Sung, J. Mater. Chem. C 1, 268 (2013)

    Article  Google Scholar 

  31. R. Giardi, S. Porro, A. Chiolerio, E. Celasco, M. Sangermano, J. Mater. Sci. 48, 1249 (2013)

    Article  ADS  Google Scholar 

  32. S. Bocchini, A. Chiolerio, S. Porro, D. Accardo, N. Garino, K. Bejtka, D. Perrone, C.F. Pirri, J. Mater. Chem. C 1, 5101 (2013)

    Article  Google Scholar 

  33. A. Chiolerio, S. Bocchini, S. Porro, Adv. Funct. Mater. (2014). doi:10.1002/adfm.201303371

    Google Scholar 

  34. K.A. Alim, V.A. Fonoberov, M. Shamsa, A.A. Balandin, J. Appl. Phys. 97, 124313 (2005)

    Article  ADS  Google Scholar 

  35. T. Ngo-Duc, K. Singh, M. Meyyappan, M.M. Oye, Nanotechnology 23, 194015 (2012)

    Article  ADS  Google Scholar 

  36. Y. Zhang, H. Jia, R. Wang, C. Chen, X. Luo, D. Yu, Appl. Phys. Lett. 83, 4631 (2003)

    Article  ADS  Google Scholar 

  37. X.C. Xu, X.W. Sun, Z.L. Dong, M.B. Yu, T.D. My, X.H. Zhang, S.J. Chua, T.J. White, Nanotechnology 15, 839 (2004)

    Article  ADS  Google Scholar 

  38. M.S. Kim, K.G. Yim, J.-Y. Leem, J. Korean Phys. Soc. 59, 2354 (2011)

    Article  Google Scholar 

  39. E.S. Shim, H.S. Kang, J.S. Kang, J.H. Kim, S.Y. Lee, Appl. Surf. Sci. 186, 474 (2002)

    Article  ADS  Google Scholar 

  40. C.-J. Chang, S.-T. Hung, C.-K. Lin, C.-Y. Chen, E.-H. Kuo, Thin Solid Films 519, 1693 (2010)

    Article  ADS  Google Scholar 

  41. I.A. Palani, D. Nakamura, K. Okazaki, M. Higashihata, T. Okada, Mat. Sci. Eng. B 176, 1526 (2011)

    Article  Google Scholar 

  42. H. Liu, G. Piret, B. Sieber, J. Laureyns, P. Roussel, W. Xu, R. Boukherroub, S. Szunerits, Electr. Comm. 11, 945 (2009)

    Article  Google Scholar 

  43. L. Zhu, C. Ton-That, M.R. Phillips, Mat. Lett. 99, 42 (2013)

    Article  Google Scholar 

  44. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, W.-F. Hsieh, Appl. Phys. Lett. 88, 263117 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The support by Prof. F. Giorgis and Dr. K. Bejtka for Raman characterization is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Laurenti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurenti, M., Verna, A., Fontana, M. et al. Selective growth of ZnO nanowires on substrates patterned by photolithography and inkjet printing. Appl. Phys. A 117, 901–907 (2014). https://doi.org/10.1007/s00339-014-8453-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8453-9

Keywords

Navigation