Skip to main content
Log in

Formation of nanostructures by an intense femtosecond pulse laser irradiating Au film on sapphire substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate the morphology change of Au film on sapphire substrate by irradiating with a 1 kHz femtosecond pulse laser. Under observation of a scanning electron microscope, a textured nanostructure was formed in the exposed area on Au film due to laser ablation and subsequent stress relaxation. This process was strongly determined by the laser intensity profile and the dynamics of molten liquid. With the increasing of laser pulses number, the Au film was broken down and then a few polarization-dependent nanoripples arranged in the same direction appeared on the sapphire surface, which may result from a spatial modulation of energy due to the interference between the incident light and the excited surface plasmon polaritons. In addition, we used an energy dispersive spectrometer to analyze the chemical composition of nanoripples on the surface and in the ablated crater, respectively. The changes of O and Al elements implied that a complicated chemical transformation participated in the nanoripples formation process. We believe that present results are very useful for the analysis of the interaction between femtosecond laser and solids, especially the film material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 81, 325 (2005)

    Article  ADS  Google Scholar 

  2. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  3. R.R. Gattass, E. Mazur, Nat. Photon. 2, 219 (2008)

    Article  ADS  Google Scholar 

  4. Y. Liao, J. Song, E. Li, Y. Luo, Y. Shen, D. Chen, Y. Cheng, Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip 12, 746 (2012)

    Article  Google Scholar 

  5. A.I. Kuznetsov, A.B. Evlyukhin, M.R. Gonc-alves, C. Reinhardt, A. Koroleva, M.L. Arnedillo, R. Kiyan, O. Marti, B.N. Chichkov, ACS Nano 5, 4843 (2011)

    Article  Google Scholar 

  6. S. Preuss, A. Demchuk, M. Stuke, Appl. Phys. A 61, 33 (1995)

    Article  ADS  Google Scholar 

  7. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  8. A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2013)

    Article  Google Scholar 

  9. Y. Dai, M. He, H.D. Bian, B. Lu, X.N. Yan, G.H. Ma, Appl. Phys. A 106, 567 (2012)

    Article  ADS  Google Scholar 

  10. G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, H. Graener, Appl. Phys. A A 81, 799 (2005)

    Article  ADS  Google Scholar 

  11. S. Preuss, E. Matthias, M. Stuke, Appl. Phys. A 59, 79 (1994)

    Article  ADS  Google Scholar 

  12. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  13. Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)

    Article  ADS  Google Scholar 

  14. J.E. Sipe, J.F. Young, J.F. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  15. A.Y. Vorobyev, V.S. Makin, C. Guo, J. Appl. Phys. 101, 034903 (2007)

    Article  ADS  Google Scholar 

  16. V.S. Makin, R.S. Makin, A.Y. Vorobyev, C. Guo, Tech. Phys. Lett. 34, 387 (2008)

    Article  ADS  Google Scholar 

  17. J. Reif, O. Varlamova, S. Varlamov, M. Bestehorn, Appl. Phys. A 104, 969 (2011)

    Article  ADS  Google Scholar 

  18. Y. Shimotsuma, P. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  19. C. Hnatovskya, R.S. Taylor, P.P. Rajeev, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Appl. Phys. Lett. 87, 014104 (2005)

    Article  ADS  Google Scholar 

  20. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang, H. Kuroda, Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  21. D. Dufft, A. Rosenfeld, S.K. Das, R. Grunwald, J. Bonse, J. Appl. Phys. 105, 034908 (2009)

    Article  ADS  Google Scholar 

  22. A.Y. Vorobyev, C. Guo, Opt. Express 14, 2164 (2006)

    Article  ADS  Google Scholar 

  23. A.I. Kuznetsov, J. Koch, B.N. Chichkov, Appl. Phys. A 94, 221 (2009)

    Article  ADS  Google Scholar 

  24. Y.P. Meshcheryakov, N.M. Bulgakova, Appl. Phys. A 82, 363 (2005)

    Article  ADS  Google Scholar 

  25. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Chem. Phys. 113, 11892 (2009)

    Google Scholar 

  26. D.S. Ivanov, A.I. Kuznetsov, V.P. Lipp, B. Rethfeld, B.N. Chichkov, M.E. Garcia, W. Schulz, Appl. Phys. A 111, 675 (2013)

    Article  ADS  Google Scholar 

  27. Y. Nakata, N. Miyanaga, T. Okada, Appl. Surf. Sci. 253, 6555 (2007)

    Article  ADS  Google Scholar 

  28. J.P. Moening, D.G. Georgiev, J.G. Lawrence, J. Appl. Phys. 109, 014304 (2011)

    Article  ADS  Google Scholar 

  29. J.G. Fujimoto, J.M. Liu, E.P. Ippen, Phys. Rev. Lett. 53, 1837 (1984)

    Article  ADS  Google Scholar 

  30. I.N. Zavestovskaya, A.P. Kanavin, N.A. Men’kova, J. Opt. Technol. 75, 353 (2008)

    Article  Google Scholar 

  31. V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 96, 057404 (2006)

    Article  ADS  Google Scholar 

  32. A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin, V.V. Trubaev, Opt. Eng. 31, 720 (1992)

    Article  ADS  Google Scholar 

  33. L. Qi, K. Nishii, Y. Namba, Opt. Lett. 34, 1846 (2009)

    Article  ADS  Google Scholar 

  34. E.V. Golosov, V.I. Emel’yanov, A.A. Ionin, YuR Kolobov, S.I. Kudryashov, A.E. Ligachev, Y.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, JETP Lett. 90, 107 (2009)

    Article  ADS  Google Scholar 

  35. S. Hou, Y. Huo, P. Xiong, Y. Zhang, S. Zhang, T. Jia, Z. Sun, J. Qiu, Z. Xu, J. Phys. D Appl. Phys. 44, 505401 (2011)

    Article  ADS  Google Scholar 

  36. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002)

    Article  ADS  Google Scholar 

  37. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479 (2012)

    Article  ADS  Google Scholar 

  38. M. Lancry, K. Cook, J. Canning, B. Poumellec, in The International Quantum Electronics Conference (IQEC)/The Conference on Lasers and Electro-Optics (CLEO) Pacific Rim (IQEC/CLEO-Pacific Rim 2011), Sydney, Australia, 2011, pp. 208–210

Download references

Acknowledgments

We are grateful to the helpful suggestions from Dr. Juan Song of Jiangsu University. This work was financially supported by National Natural Science Foundation of China (Grants No. 60908007, 11174195), Shanghai Natural Science Foundation (13ZR1414800) and Innovation Program of Shanghai Municipal Education Commission (12YZ002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, M., Dai, Y., Yan, X. et al. Formation of nanostructures by an intense femtosecond pulse laser irradiating Au film on sapphire substrate. Appl. Phys. A 114, 1031–1037 (2014). https://doi.org/10.1007/s00339-014-8273-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8273-y

Keywords

Navigation