Skip to main content
Log in

The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The strong influence of laser polarization on the orientation and shape of femtosecond-laser-induced self-organized nanostructures (‘ripples’, LIPSS) still constitutes an open question, taking into account that the laser electric field is present only at the first step of electronic excitation. Based on the explanation of similar structures generated during ion sputtering, we present a theoretical model indicating a possible explanation for this phenomenon. Our model shows that a directional asymmetry in the pattern can result from a spatial asymmetry of the initial excitation, induced e.g. by a corresponding distribution of excited-electron kinetic energies. Numerical simulation of this model yields typical patterns which are compared to experimental observations under appropriate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Siegrist, G. Kaech, F. Kneubühl, Appl. Phys. 2, 45 (1973)

    Article  ADS  Google Scholar 

  3. P.M. Fauchet, A.E. Siegman, Appl. Phys. A 32, 135 (1983)

    Article  ADS  Google Scholar 

  4. H.M. van Driel, J.E. Sipe, J.F. Young, Phys. Rev. Lett. 49, 1955 (1982)

    Article  ADS  Google Scholar 

  5. F. Keilmann, Y.H. Bai, Appl. Phys. A 29, 9 (1982)

    Article  ADS  Google Scholar 

  6. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  7. J.F. Young, J.E. Sipe, H.M. van Driel, Phys. Rev. B 30, 2001 (1984)

    Article  ADS  Google Scholar 

  8. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673 (1998)

    Article  ADS  Google Scholar 

  9. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197, 891–198 (2002)

    Article  ADS  Google Scholar 

  10. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  11. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2004)

    Article  ADS  Google Scholar 

  12. F. Costache, S. Kouteva-Arguirova, J. Reif, Appl. Phys. A 79, 1429 (2004)

    Article  ADS  Google Scholar 

  13. T. Tomita, K. Kinoshita, S. Matsuo, S. Hashimoto, Appl. Phys. Lett. 90, 153115 (2007)

    Article  ADS  Google Scholar 

  14. G. Miyaji, K. Miyazaki, Appl. Phys. Lett. 91, 123102 (2007)

    Article  ADS  Google Scholar 

  15. D.C. Emmony, R.P. Howson, L.J. Willis, Appl. Phys. Lett. 23, 598 (1973)

    Article  ADS  Google Scholar 

  16. J. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  17. M. Groenendijk, J. Meijer, J. Laser Appl. 18, 227 (2006)

    Article  Google Scholar 

  18. C.H. Crouch, J.E. Carey, J.M. Warrender, M.J. Aziz, E. Mazur, Appl. Phys. Lett. 84, 1850 (2004)

    Article  ADS  Google Scholar 

  19. X.C. Wang, G.C. Lim, F.L. Ng, W. Liu, S.J. Chua, Appl. Surf. Sci. 252, 1492 (2005)

    Article  ADS  Google Scholar 

  20. T.H.R. Crawford, H.K. Haugen, Appl. Surf. Sci. 253, 4970 (2007)

    Article  ADS  Google Scholar 

  21. G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008)

    Article  ADS  Google Scholar 

  22. J. Wang, C. Guo, J. Appl. Phys. 100, 023511 (2006)

    Article  ADS  Google Scholar 

  23. J. Bonse, A. Rosenfeld, J. Krüger, Appl. Surf. Sci. (2010). doi:10.1016/j.apsusc.2010.11.059

    Google Scholar 

  24. A.Y. Vorobyev, C. Guo, Appl. Surf. Sci. 253, 7272 (2007)

    Article  ADS  Google Scholar 

  25. R.A. Ganeev, M. Baba, T. Ozaki, H. Kuroda, J. Opt. Soc. Am. B, Opt. Phys. 27, 1077 (2010)

    Article  ADS  Google Scholar 

  26. H.Y. Zheng, X.C. Wang, W. Zhou, Int. J. Surf. Sci. Eng. 3, 114 (2009)

    Article  Google Scholar 

  27. C. Misbah, A. Valance, Eur. Phys. J. E 12, 523 (2003)

    Article  Google Scholar 

  28. J. Erlebacher, M.J. Aziz, E. Chason, M.B. Sinclair, J.A. Floro, Phys. Rev. Lett. 82, 2330 (1999)

    Article  ADS  Google Scholar 

  29. J. Reif, F. Costache, M. Bestehorn, in Recent Advances in Laser Processing of Materials, ed. by J. Perriere, E. Millon, E. Fogarassy (Elsevier, Amsterdam, 2006). Chap. 9, p. 275ff

    Google Scholar 

  30. P. Sigmund, J. Mater. Sci. 8, 1545 (1973)

    Article  ADS  Google Scholar 

  31. F. Costache, M. Henyk, J. Reif, Appl. Surf. Sci. 186, 352 (2002)

    Article  ADS  Google Scholar 

  32. J. Reif, O. Varlamova, F. Costache, Appl. Phys. A 92, 1019 (2008)

    Article  ADS  Google Scholar 

  33. O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)

    Article  ADS  Google Scholar 

  34. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1995)

    Article  ADS  Google Scholar 

  35. A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, Appl. Phys. A 69, 373 (1999)

    Article  ADS  Google Scholar 

  36. A. Cavallieri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys. 85, 3301 (1999)

    Article  ADS  Google Scholar 

  37. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19 (2002)

    Article  ADS  Google Scholar 

  38. R. Cuerno, A.-L. Barabási, Phys. Rev. Lett. 74, 4746 (1995)

    Article  ADS  Google Scholar 

  39. S. Varlamov, M. Bestehorn, O. Varlamova, J. Reif, (2010 to be published)

  40. J. Reif, F. Costache, in Advances in Atomic, Molecular, and Optical Physics, vol. 53, ed. by M.O. Scully, G. Rempe (Academic Press, New York, 2006), pp. 228–249, and references therein

    Google Scholar 

  41. N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, Yu.V. Petrov, P.S. Komarov, M.B. Agranat, S.I. Anisimov, K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009)

    Article  ADS  Google Scholar 

  42. A. Zangwill, Physics of Surfaces (Cambridge University Press, Cambridge, 1988)

    Google Scholar 

  43. J. Reif, in Laser–Surface Interactions for New Materials Production (Springer, Berlin, 2010), Chap. 2, pp. 1941

    Google Scholar 

  44. Y. Kuramoto, T. Tsuzuki, Prog. Theor. Phys. 55, 356 (1976)

    Article  ADS  Google Scholar 

  45. G. Sivashinsky, Acta Astronaut. 4, 1177 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  46. J. Reif, O. Varlamova, M. Ratzke, M. Schade, H.S. Leipner, Tz. Arguirov, Appl. Phys. A 101, 361 (2010)

    Article  ADS  Google Scholar 

  47. S. Park, B. Kahng, H. Jeong, A.-L. Barabási, Phys. Rev. Lett. 83, 3486 (1999)

    Article  ADS  Google Scholar 

  48. J. Reif, F. Costache, O. Varlamova, G. Jia, M. Ratzke, Phys. Status Solidi C 6, 681 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reif, J., Varlamova, O., Varlamov, S. et al. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation. Appl. Phys. A 104, 969–973 (2011). https://doi.org/10.1007/s00339-011-6472-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6472-3

Keywords

Navigation