Skip to main content
Log in

Study of the structural and morphological changes during the phase transition of ZnS to ZnO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline zinc sulfide (ZnS) (nanorods) was synthesized by chemical precipitation method, and they were annealed in air at different temperatures in the range 200–700 °C for the phase transition of ZnS to ZnO. The characterization of the system was done by different techniques such as X-ray diffraction (XRD), high-resolution transmission electron microscopy, UV–Vis spectroscopy, photoluminescence spectroscopy and differential scanning calorimetry (DSC). From the XRD and TEM analysis, the crystal structure is found to convert from cubic ZnS phase to the hexagonal ZnO phase and its morphology from nanorods to nanoparticles with the increasing annealing temperatures. The UV–Visible absorption and photoluminescence measurements revealed that the relative changes in the phases alter the band gap and introduce new kinds of defects in the system. The percentage of the ZnS and ZnO phase has been found to be proportional to the annealing temperature for a fixed time interval, and the DSC measurement has also found similar results as in the XRD pattern during the phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  2. Y. Wang, N. Herron, J. Phys. Chem. 91, 257 (1987)

    Article  Google Scholar 

  3. V.L. Colvin, M.C. Schlamp, A.P. Alivisatos, Nature 370, 354 (1994)

    Article  ADS  Google Scholar 

  4. S.A. Empedocles, M.G. Bawendi, Science 278, 2114 (1997)

    Article  ADS  Google Scholar 

  5. J. Zhong, H. Chen, G. Saraf, Y. Lu, C.K. Choi, J.J. Song, D.M. Mackie, H. Shen, Appl. Phys. Lett. 90, 3515 (2007)

    ADS  Google Scholar 

  6. S.C. Pillai, J.M. Kelly, D.E. McCormack, R.J. Ramesh, Mater. Sci. Technol. 14, 1572 (2004)

    Google Scholar 

  7. Z.P. Sun, L. Liu, L. Zhang, D.Z. Jia, Nanotechnology 17, 2266 (2006)

    Article  ADS  Google Scholar 

  8. T.J. Kuo, C.N. Lin, C.L. Kuo, M.H. Huang, Chem. Mater. 19, 5143 (2007)

    Article  Google Scholar 

  9. K. Yu, Y.S. Zhang, R.L. Xu, D.S. Jiang, L.Q. Luo, Q. Li, Z.Q. Zhu, W. Lu, Solid State Comm. 133, 43 (2005)

    Article  ADS  Google Scholar 

  10. M. Bredol, J. Merikhi, J. Mater. Sci. 33, 471 (1998)

    Article  ADS  Google Scholar 

  11. G. Sharma, S.D. Han, J.D. Kim, S.P. Khatkar, Y.W. Rhee, Mater. Sci. Eng. B 131, 271 (2006)

    Article  Google Scholar 

  12. P.T. Snee, R.C. Somers, G. Nair, J.P. Zimmer, M.G. Bawendi, D.G. Nocera, J. Am. Chem. Soc. 128, 13320 (2006)

    Article  Google Scholar 

  13. T.V. Prevenslik, J. Lumin. 87–89, 1210 (2000)

    Article  Google Scholar 

  14. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Angew. Chem. Int. Ed. 44, 1269 (2005)

    Article  Google Scholar 

  15. C.M. Lieber, Nano Lett. 2, 81–82 (2002)

    Article  ADS  Google Scholar 

  16. X.S. Fang, C.H. Ye, L.D. Zhang, Y.H. Wang, Y.C. Wu, Adv. Func. Mater. 15, 63–68 (2005)

    Article  Google Scholar 

  17. D.F. Liu, Y.J. Xiang, Q. Liao, J.P. Zhang, X.C. Wu, Z.X. Zhang, L.F. Liu, W.J. Ma, J. Shen, W.Y. Zhou, S.S. Xie, Nanotechnology 18, 405303 (2007)

    Article  Google Scholar 

  18. X.H. Sun, S. Lam, T.K. Sham, F. Heigl, A. Jurgensen, N.B. Wong, J. Phys. Chem. 109, 3120–3127 (2005)

    Article  Google Scholar 

  19. Q. Wei, G.W. Meng, X.H. An, Y.F. Hao, L.D. Zhang, Nanotechnology 16, 2561–2566 (2005)

    Article  ADS  Google Scholar 

  20. X.T. Zhou, P.-S.G. Kim, T.K. Sham, S.T. Lee, J. Appl. Phys. 98, 024312 (2005)

    Article  ADS  Google Scholar 

  21. G. Qian, K. Huo, P.K. Chu, J. Phys. Chem. C 113, 5520–5525 (2009)

    Article  Google Scholar 

  22. M.W. Murphy, P.S.G. Kim, X. Zhou, J. Zhou, M. Coulliard, G.A. Botton, T.-K. Sham, Phys. Chem. C 113, 4755–4757 (2009)

    Article  Google Scholar 

  23. Z.L. Wang, X.Y. Kong, J.M. Zuo, Phys. Rev. Lett. 91, 185502–185504 (2003)

    Article  ADS  Google Scholar 

  24. X. Wang, P. Gao, J. Li, C.J. Summers, Z.L. Wang, Adv. Mater. 14, 1732–1735 (2002)

    Article  Google Scholar 

  25. M.Y. Lu, P.Y. Su, Y.L. Chueh, Y.J. Chen, L. Chou, J. Appl. Surf. Sci. 244, 96–100 (2005)

    Article  ADS  Google Scholar 

  26. C.W. Sun, J.S. Jeong, J.Y. Lee, J. Cryst. Growth 294, 162–167 (2006)

    Article  ADS  Google Scholar 

  27. S.B. Qadri, E.F. Skelton, D. Hsu, A.D. Dinsmore, J. Yang, H.F. Gray, B.R. Ratna, Phys. Rev. B 60, 9191–9193 (1999)

    Article  ADS  Google Scholar 

  28. B.D. Cullity, Element of X-ray diffraction, 2nd edn. (Addison-Wesley, New York, 1956), p. 99

    Google Scholar 

  29. T. Kryshtab, V.S. Khomchenko, J.A. Andraca-Adame, A.K. Savin, A. Kryvko, G. Juarez, R. Pena-Sierra, J. Lumin. 129, 1677–1681 (2009)

    Article  Google Scholar 

  30. D. Jiang, L. Cao, W. Liu, G. Su, H. Qu, Y. Sun, B. Dong, Nanoscale Res. Lett. 4, 78–83 (2009)

    Article  ADS  Google Scholar 

  31. J. Tauc, A. Menthe, J. Non-Cryst. Sol. 8–10, 569–585 (1972)

    Article  Google Scholar 

  32. Y. Li, Y. Ding, Y. Zhang, Y. Qian, J. Phys. Chem. Solids 60, 13–15 (1999)

    Article  ADS  Google Scholar 

  33. S.-F. Wei, Q. Jiang, J.-S. Lian, Trans. Nonferrous Met. Soc. China 18, 1089–1093 (2008)

    Article  Google Scholar 

  34. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S.F. Chichibu, M. Kawasaki, Jpn. J. Appl. Phys. 44, L643–L645 (2005)

    Article  ADS  Google Scholar 

  35. R. Chen, Y. Kirsh, Analysis of thermally stimulated processes (Pergamon, Oxford, 1981)

    Google Scholar 

  36. X. Fu, X. Yang, Z. Qiu, F. Zhao, J. Zhuang, A. He, L. Chen, C. Wu, X. Duan, C. Lianga, M. Wu, Cryst. Eng. Comm. 15, 3334 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to the University Science Instrumentation Centre (USIC), University of Delhi (special thanks to Mr. Rahul Bhardwaj for TEM) for providing instrumental facility and University Grant Commission (UGC) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Rani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, G., Sahare, P.D. Study of the structural and morphological changes during the phase transition of ZnS to ZnO. Appl. Phys. A 116, 831–837 (2014). https://doi.org/10.1007/s00339-013-8173-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8173-6

Keywords

Navigation