Skip to main content
Log in

Growth and characterization of ZnSe nanocrystals synthesized using solvothermal process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnSe nanocrystals with zinc blende structure are synthesized by solvothermal process at 1-h, 3-h and 5-h reaction times in a mixed solvent of hydrazine hydrate [H6N2O], ammonia [NH3] and de-ionized water. Zinc acetate [(CH3COO)2 Zn; 2H2O] and sodium selenite [Na2SeO3] are, respectively, used as precursors for zinc and selenium ions. X-ray diffraction (XRD) and scanning electron microscope (SEM) study show that the crystallinity and the chemical purity of the compound improve with increase in reaction duration. SEM images show formation of bulk rod-shaped ZnO particles in samples prepared at 1-h and 3-h reaction times, which is absent in the 5-h sample. TGA measurements also show that the ZnSe nanocrystals synthesized in this process have high purity and the nanocrystals prepared for longer duration have improved purity as well as higher thermal stability. In Raman measurements, nanocrystalline nature such as surface phonon (SP) mode and phonon line width broadening are observed. The observed variation of the relative intensities of the phonon modes follows the differences in the size of nanocrystals, in which the relative strength of the transverse optical (TO) phonon mode is found to increase with nanocrystals size and the SP phonon relative strength on the other hand decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Yang, G. Wang, H. Liu, J. Park, X. Gou, X. Cheng, J. Cryst. Growth 310, 3645 (2008)

    CAS  Google Scholar 

  2. Y.-L. Duan, S.-L. Yao, C. Dai, X.-H. Liu, G.-F. Xu, Trans. Nonferrous Metals Soc. China 24, 2588 (2014)

    CAS  Google Scholar 

  3. J.P. Faurie, E. Tournié, ZnSe-based heterostructures for blue-green lasers. C. R. Acad. Sci. Paris 1, 23 (2000)

    CAS  Google Scholar 

  4. A. Sennaroglu, U. Demirbas, N. Vermeulen, H. Ottevaere, H. Thienpont, Opti. Commun. 268, 115 (2006)

    CAS  Google Scholar 

  5. H. Wenisch, M. Fehrer, M. Klude, K. Ohkawa, D. Hommel, J. Cryst. Growth 214–215, 1075 (2000)

    Google Scholar 

  6. M.W. Cho, J.H. Chang, H. Wenisch, H. Makino, T. Yao, Phys. Status Solidi 180, 217 (2000)

    CAS  Google Scholar 

  7. Z. Ning, H. Tian, C. Yuan, Y. Fu, H. Qin, L. Sun, H. Ågren, Chem. Commun. 47, 1536 (2011)

    CAS  Google Scholar 

  8. J. Xu, X. Yang, Q.-D. Yang, T.-L. Wong, S.-T. Lee, W.-J. Zhang, C.-S. Lee, J. Mater. Chem. 22, 13374 (2012)

    CAS  Google Scholar 

  9. W. Wang, J.D. Phillips, S.J. Kim, X. Pan, J. Electron. Mater. 40, 1674 (2011)

    CAS  Google Scholar 

  10. B. Edward, P. Roman, S. Avigdor, S. Semion, B. Yelena, P. Zosya, K. Abraham, Opt. Eng. 40, 1754 (2001)

    Google Scholar 

  11. D. Wu, Z. Chen, G. Huang, X. Liu, Sens. Actuat. A 205, 72 (2014)

    CAS  Google Scholar 

  12. B.S. B. Derkowska, X. Nguyen Phu, W. Bala Nonlinear optical properties of monocrystal ZnSe, ICTON’99 (1999)

  13. J. Du, L. Xu, G. Zou, L. Chai, Y. Qian, Mater. Chem. Phys. 103, 441 (2007)

    CAS  Google Scholar 

  14. M. Ghanbari, M. Sabet, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 27, 11092 (2016)

    CAS  Google Scholar 

  15. C. Jiang, W. Zhang, G. Zou, W. Yu, Y. Qian, Nanotechnology 16, 551 (2005)

    CAS  Google Scholar 

  16. J. Zhu, Y. Koltypin, A. Gedanken, Chem. Mater. 12, 73 (2000)

    CAS  Google Scholar 

  17. L. Li, W. Qing-Sheng, D. Ya-Ping, W. Pei-Ming, Mater. Lett. 59, 1623 (2005)

    CAS  Google Scholar 

  18. G.S. Paul, P. Agarwal, Phys. Status Solidi c 7, 909 (2010)

    CAS  Google Scholar 

  19. M. Fathollahi, S.M. Pourmortazavi, S.G. Hosseini, J. Energ. Mater. 26, 52 (2007)

    Google Scholar 

  20. V.M. Bhuse, Mater. Chem. Phys. 91, 60 (2005)

    CAS  Google Scholar 

  21. T. Alhawi, M. Rehan, D. York, X. Lai, Proc. Eng. 102, 346 (2015)

    CAS  Google Scholar 

  22. A.A.H.K. Muneer, M. Ba-Abbad, A.B. Mohamah, M.S. Takriff, K. Sopian, Int. J. Electrochem. Sci. 7, 4871 (2012)

    Google Scholar 

  23. G.S. Paul, P. Gogoi, P. Agarwal, J. Non-Cryst. Solids 354, 2195 (2008)

    CAS  Google Scholar 

  24. A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)

    CAS  Google Scholar 

  25. V. Šatava, Thermochim. Acta 2, 423 (1971)

    Google Scholar 

  26. A. Khawam, D.R. Flanagan, J. Phys. Chem. B 110, 17315 (2006)

    CAS  Google Scholar 

  27. R. Liu, T. Zhang, L. Yang, Z. Zhou, Thermochim. Acta 583, 78 (2014)

    CAS  Google Scholar 

  28. M. Cardona, J. Phys. Colloques 45, C8 (1984)

    Google Scholar 

  29. P. Nandakumar, C. Vijayan, M. Rajalakshmi, A.K. Arora, Y.V.G.S. Murti, Phys. E 11, 377 (2001)

    CAS  Google Scholar 

  30. C.P.J. Marquina, J. Gonzalez, Revista Mexicana De Fisica S 53, 170 (2007)

    Google Scholar 

  31. M.J. Seong, O.I. Mićić, A.J. Nozik, A. Mascarenhas, H.M. Cheong, Appl. Phys. Lett. 82, 185 (2003)

    CAS  Google Scholar 

  32. J.J. Shiang, R.H. Wolters, J.R. Heath, J. Chem. Phys. 106, 8981 (1997)

    CAS  Google Scholar 

  33. B. Hennion, F. Moussa, G. Pepy, K. Kunc, Phys. Lett. A 36, 376 (1971)

    CAS  Google Scholar 

  34. R.K. Ram, S.S. Kushwaha, A. Shukla, Phys. Status Solidi (b) 154, 553 (1989)

    CAS  Google Scholar 

  35. A. Hui-Zhi, Z. Qing, D. Wei-Min, Chin. Phys. 13, 1753 (2004)

    Google Scholar 

  36. D. Huang, C. Jin, D. Wang, X. Liu, J. Wang, X. Wang, Appl. Phys. Lett. 67, 3611 (1995)

    CAS  Google Scholar 

  37. M. Kozielski, M. Szybowicz, F. Firszt, S. Legowski, H. Meczynska, J. Szatkowski, W. Paszkowicz, Cryst. Res. Technol. 34, 699 (1999)

    CAS  Google Scholar 

  38. C.-M. Lin, D.-S. Chuu, T.-J. Yang, W.-C. Chou, J.-A. Xu, E. Huang, Phys. Rev. B 55, 13641 (1997)

    CAS  Google Scholar 

  39. Y.-T. Nien, B. Zaman, J. Ouyang, I.-G. Chen, C.-S. Hwang, K. Yu, Mater. Lett. 62, 4522 (2008)

    CAS  Google Scholar 

  40. N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar, J. Appl. Phys. 93, 126 (2002)

    Google Scholar 

  41. B.H. Bairamov, A. Heinrich, G. Irmer, V.V. Toporov, E. Ziegler, Phys. Status Solidi (b) 119, 227 (1983)

    CAS  Google Scholar 

  42. A.W. Hewat, Solid State Commun. 8, 187 (1970)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Central Instrumentation Facility (CIF) and Center for Energy, IIT Guwahati, for SEM, FESEM and TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalhriat Zuala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuala, L., Agarwal, P. Growth and characterization of ZnSe nanocrystals synthesized using solvothermal process. J Mater Sci: Mater Electron 31, 14756–14766 (2020). https://doi.org/10.1007/s10854-020-04039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04039-6

Navigation