Skip to main content
Log in

Nonlocal vibration analysis of nanomechanical systems resonators using circular double-layer graphene sheets

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Double-layer graphene sheets (DLGSs) have potential applications as nanoelectromechanical systems (NEMS) resonators due to their specific carrier spectrum of electrons. In this study, analysis of the vibration modes of NEMS resonators using simply supported circular DLGSs has been undertaken based on nonlocal thin plate theory. Considering the properties of DLGSs, the vibration mode of circular DLGSs can be divided into an in-phase mode (IPM) and an anti-phase mode (APM). The range of resonance frequencies in the IPM is much larger than in the APM because of the influence of van der Waals forces. Nonlocal effects significantly influence the resonance frequency of circular DLGSs in higher vibration modes and at lower aspect ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.L. Ekinci, X.M.H. Huang, M.L. Roukes, Appl. Phys. Lett. 84, 4469 (2004)

    Article  ADS  Google Scholar 

  2. J.S. Bunch, A.M. van der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, P.L. McEuen, Science 315, 490 (2007)

    Article  ADS  Google Scholar 

  3. R. Grantab, V.B. Shenoy, R.S. Ruoff, Science 330, 946 (2010)

    Article  ADS  Google Scholar 

  4. Z.G. Shen, J.Z. Li, M. Yi, X.J. Zhang, S.L. Ma, Nanotechnology 22, 365306 (2011)

    Article  Google Scholar 

  5. V. Singh, S. Sengupta, H.S. Solanki, R. Dhall, A. Allain, S. Dhara, P. Pant, M.M. Deshmukh, Nanotechnology 21, 165204 (2010)

    Article  ADS  Google Scholar 

  6. N. Wei, L.Q. Xu, H.Q. Wang, J.C. Zheng, Nanotechnology 22, 105705 (2011)

    Article  ADS  Google Scholar 

  7. S. Santandrea, F. Giubileo, V. Grossi, S. Santucci, M. Passacantando, T. Schroeder, G. Lupina, A. Di Bartolomeo, Appl. Phys. Lett. 98, 163109 (2011)

    Article  Google Scholar 

  8. J.L. Qi, X. Wang, W.T. Zheng, H.W. Tian, C.Q. Hu, Y.S. Peng, J. Phys. D: Appl. Phys. 43, 055302 (2010)

    Article  ADS  Google Scholar 

  9. Y.P. Dan, Y. Lu, N.J. Kybert, Z.T. Luo, A.T.C. Johnson, Nano Lett. 9, 1472 (2009)

    Article  ADS  Google Scholar 

  10. V. Sorkin, Y.W. Zhang, J. Mol. Model. 17, 2825 (2011)

    Article  Google Scholar 

  11. H.L. Lee, Y.C. Yang, W.J. Chang, Jpn. J. Appl. Phys. 52, 025101 (2013)

    Article  ADS  Google Scholar 

  12. M. Zarenia, J.M.P. Jr, F.M. Peeters, G.A. Farias, Nano Lett. 9, 4088 (2009)

    Article  ADS  Google Scholar 

  13. J.M.P. Jr, P. Vasilopoulos, F.M. Peeters, Nano Lett. 7, 946 (2007)

    Article  ADS  Google Scholar 

  14. C. Virojanadara, R. Yakimova, A.A. Zakharov, L.I. Johansson, J. Phys. D: Appl. Phys. 43, 374010 (2010)

    Article  Google Scholar 

  15. J.X. Shi, Q.Q. Ni, X.W. Lei, T. Natsuki, Comput. Mater. Sci. 50, 3085 (2011)

    Article  Google Scholar 

  16. J.X. Shi, Q.Q. Ni, X.W. Lei, T. Natsuki, J. Appl. Phys. 110, 084321 (2011)

    Article  ADS  Google Scholar 

  17. T. Natsuki, J.X. Shi, Q.Q. Ni, J. Appl. Phys. 111, 044310 (2012)

    Article  ADS  Google Scholar 

  18. T. Natsuki, J.X. Shi, Q.Q. Ni, J. Phys.: Condens. Matter 24, 135004 (2012)

    ADS  Google Scholar 

  19. A. Shakouri, T.Y. Ng, R.M. Lin, Nanotechnology 22, 295711 (2011)

    Article  Google Scholar 

  20. J.R. Mianroodi, S.A. Niaki, R. Naghdabadi, M. Asghari, Nanotechnology 22, 305703 (2011)

    Article  Google Scholar 

  21. J.B. Wang, X.Q. He, S. Kitipornchai, H.W. Zhang, J. Phys. D: Appl. Phys. 44, 135401 (2011)

    Article  ADS  Google Scholar 

  22. E. Mohammadpour, M. Awang, Appl. Phys. A 106, 581 (2012)

    Article  ADS  Google Scholar 

  23. C.Y. Wang, K. Mylvaganam, L.C. Zhang, Phys. Rev. B 80, 155445 (2009)

    Article  ADS  Google Scholar 

  24. W.H. Duan, C.M. Wang, Nanotechnology 20, 075702 (2009)

    Article  ADS  Google Scholar 

  25. B. Arash, Q. Wang, J. Nanotechnol. Eng. Med. 2, 011012 (2011)

    Article  Google Scholar 

  26. H.S. Shen, L. Shen, C.L. Zhang, Appl. Phys. A 103, 103 (2011)

    Article  ADS  Google Scholar 

  27. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  28. S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells (McGraw-Hill, New York, 1959)

    Google Scholar 

  29. S. Kitipornchai, X.Q. He, K.M. Liew, Phys. Rev. B 72, 075443 (2005)

    Article  ADS  Google Scholar 

  30. K.M. Liew, X.Q. He, S. Kitipornchai, Acta Mater. 54, 4229 (2006)

    Article  Google Scholar 

  31. R. Ansari, R. Rajabiehfard, B. Arash, Comput. Mater. Sci. 49, 831 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid from the Global COE Program of the Ministry of Education, Culture, Sports, Science and Technology and by CLUSTER (second stage) from the Ministry of Education, Culture, Sports, Science and Technology (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Qing Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, JX., Ni, QQ., Lei, XW. et al. Nonlocal vibration analysis of nanomechanical systems resonators using circular double-layer graphene sheets. Appl. Phys. A 115, 213–219 (2014). https://doi.org/10.1007/s00339-013-7963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7963-1

Keywords

Navigation