Skip to main content
Log in

Study on tensile-compressive and shear effects of van der Waals interactions on free vibration of bilayer graphene nanoribbons

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This study comprehensively investigates tensile-compressive and shear effects of van der Waals (vdWs) interactions on free vibration of cantilever bilayer graphene nanoribbons (CBGNRs) to be answered to this question that how and how much the effects of each of these factors are in comparison with the other one when they are considered simultaneously. To this end, the CBGNRs are modeled based on sandwich beam theory in which each nanoribbon plays role of sandwich layer and vdWs interactions are equivalent to the sandwich core. At the first step a geometrical–analytical method is presented to calculate the equivalent tensile-compressive and shear moduli of vdWs interactions. After that, a set of coupled governing equations of motion and boundary conditions are derived and solved numerically by the harmonic differential quadrature method. This study shows that for designing multi-layer GNR based applications, such as resonators, the shear effect of vdWs interactions must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145. doi:10.1021/cr900070d

    Article  Google Scholar 

  2. Bunch JS, van der Zande AM, Verbridge SS et al (2007) Electromechanical resonators from graphene sheets. Science 80:490–493. doi:10.1126/science.1136836

    Article  ADS  Google Scholar 

  3. Chen C, Yang Q-HQ, Yang Y et al (2009) Self-assembled free-standing graphite oxide membrane. Adv Mater 21:3007–3011. doi:10.1002/adma.200803726

    Article  Google Scholar 

  4. Ions D, Mechanical E, Cross-linking PC et al (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    Article  Google Scholar 

  5. Sakhaee-Pour A, Ahmadian MTT, Vafai A (2008) Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun 145:168–172. doi:10.1016/j.ssc.2007.10.032

    Article  ADS  Google Scholar 

  6. Yoon HJ, Jun DH, Yang JH et al (2011) Carbon dioxide gas sensor using a graphene sheet. Sens Actuators B Chem 157:310–313. doi:10.1016/j.snb.2011.03.035

    Article  Google Scholar 

  7. Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907. doi:10.1021/nl0731872

    Article  ADS  Google Scholar 

  8. Neto AHC, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109. doi:10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  9. Wang Z, Zhou X, Zhang J et al (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113:14071–14075. doi:10.1021/jp906348x

    Article  Google Scholar 

  10. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877. doi:10.1021/ja803688x

    Article  Google Scholar 

  11. Kim K, Choi J-Y, Kim T et al (2011) A role for graphene in silicon-based semiconductor devices. Nature 479:338–344. doi:10.1038/nature10680

    Article  ADS  Google Scholar 

  12. Yoo E, Kim J, Hosono E et al (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282. doi:10.1021/nl800957b

    Article  ADS  Google Scholar 

  13. Wang D, Choi D, Li J et al (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914. doi:10.1021/nn900150y

    Article  Google Scholar 

  14. Seger B, Kamat PV (2009) Electrocatalytically active graphene–platinum nanocomposites. Role of 2-D carbon support in PEM fuel cells. J Phys Chem C 113:7990–7995. doi:10.1021/jp900360k

    Article  Google Scholar 

  15. Yoo E, Okata T, Akita T et al (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9:2255–2259

    Article  ADS  Google Scholar 

  16. Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331. doi:10.1038/nnano.2008.96

    Article  ADS  Google Scholar 

  17. Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. doi:10.1038/nature04969

    Article  ADS  Google Scholar 

  18. Wang D, Li F, Zhao J et al (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 3:1745–1752

    Article  Google Scholar 

  19. Yang X, Dou X, Rouhanipour A et al (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217

    Article  Google Scholar 

  20. Nilsson J, Neto AHC, Guinea F et al (2008) Electronic properties of bilayer and multilayer graphene. Phys Rev B 78:45405. doi:10.1103/PhysRevB.78.045405

    Article  ADS  Google Scholar 

  21. Kordkheili SAH, Moshrefzadeh-Sani H (2013) Mechanical properties of double-layered graphene sheets. Comput Mater Sci 69:335–343. doi:10.1016/j.commatsci.2012.11.027

    Article  Google Scholar 

  22. Lu CL, Chang C-P, Huang Y-C et al (2006) Influence of an electric field on the optical properties of few-layer graphene with AB stacking. Phys Rev B 73:144427. doi:10.1103/PhysRevB.73.144427

    Article  ADS  Google Scholar 

  23. Zhang YY, Gu YT (2013) Mechanical properties of graphene: effects of layer number, temperature and isotope. Comput Mater Sci 71:197–200. doi:10.1016/j.commatsci.2013.01.032

    Article  ADS  Google Scholar 

  24. Nakamura M, Hirasawa L (2008) Electric transport and magnetic properties in multilayer graphene. Phys Rev B 77:45429. doi:10.1103/PhysRevB.77.045429

    Article  ADS  Google Scholar 

  25. Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Numerical investigation of elastic mechanical properties of graphene structures. Mater Des 31:4646–4654. doi:10.1016/j.matdes.2010.05.036

    Article  MATH  Google Scholar 

  26. Murmu T, Adhikari S (2010) Nonlocal transverse vibration of double-nanobeam-systems. J Appl Phys 108:83514. doi:10.1063/1.3496627

    Article  Google Scholar 

  27. Shi J-XJ, Ni QQ-Q, Lei XX-W, Natsuki T (2011) Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model. Comput Mater Sci 50:3085–3090. doi:10.1016/j.commatsci.2011.05.031

    Article  Google Scholar 

  28. Shi J-X, Ni Q-Q, Lei X-W, Natsuki T (2012) Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes. Phys E Low Dimens Syst Nanostruct 44:1136–1141. doi:10.1016/j.physe.2011.12.023

    Article  ADS  Google Scholar 

  29. Ansari R, Arash B, Rouhi H (2011) Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos Struct 93:2419–2429. doi:10.1016/j.compstruct.2011.04.006

    Article  Google Scholar 

  30. Ansari R, Rajabiehfard R, Arash B (2010) Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput Mater Sci 49:831–838. doi:10.1016/j.commatsci.2010.06.032

    Article  Google Scholar 

  31. Arash B, Wang Q (2011) Vibration of single- and double-layered graphene sheets. J Nanotechnol Eng Med 2:011012. doi:10.1115/1.4003353

    Article  Google Scholar 

  32. Jomehzadeh E, Saidi ARR (2011) A study on large amplitude vibration of multilayered graphene sheets. Comput Mater Sci 50:1043–1051. doi:10.1016/j.commatsci.2010.10.045

    Article  Google Scholar 

  33. Kitipornchai S, He XQ, Liew KM (2005) Continuum model for the vibration of multilayered graphene sheets. Phys Rev B 72:075443. doi:10.1103/PhysRevB.72.075443

    Article  ADS  Google Scholar 

  34. Liew KMKM, He XQ, Kitipornchai S (2006) Predicting nanovibration of multi-layered graphene sheets embedded in an elastic matrix. Acta Mater 54:4229–4236. doi:10.1016/j.actamat.2006.05.016

    Article  Google Scholar 

  35. He XQQ, Wang JBB, Liu B, Liew KMKM (2012) Analysis of nonlinear forced vibration of multi-layered graphene sheets. Comput Mater Sci 61:194–199. doi:10.1016/j.commatsci.2012.03.043

    Article  Google Scholar 

  36. Farajpour A, Solghar AA, Shahidi A et al (2013) Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Phys E Low Dimens Syst Nanostruct 47:197–206. doi:10.1016/j.physe.2012.10.028

    Article  ADS  Google Scholar 

  37. Liu Y, Xu Z, Zheng Q (2011) The interlayer shear effect on graphene multilayer resonators. J Mech Phys Solids 59:1613–1622. doi:10.1016/j.jmps.2011.04.014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Nazemnezhad R, Hosseini-Hashemi S (2014) Free vibration analysis of multi-layer graphene nanoribbons incorporating interlayer shear effect via molecular dynamics simulations and nonlocal elasticity. Phys Lett A 378:3225–3232. doi:10.1016/j.physleta.2014.09.037

    Article  ADS  MathSciNet  Google Scholar 

  39. Nazemnezhad R, Shokrollahi H, Hosseini-Hashemi S (2014) Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect. J Appl Phys 115:174303. doi:10.1063/1.4874221

    Article  ADS  Google Scholar 

  40. Liu DY, Chen WQ, Zhang C (2013) Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect. Phys Lett Sect A Gen At Solid State Phys 377:1297–1300. doi:10.1016/j.physleta.2013.03.033

    MATH  Google Scholar 

  41. Rokni H, Lu W (2013) A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects. J Appl Phys 113:1–10. doi:10.1063/1.4800543

    Article  Google Scholar 

  42. Kiani K (2011) Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part I: theoretical formulations. Phys E Low Dimens Syst Nanostruct 44:229–248

    Article  ADS  Google Scholar 

  43. Kiani K (2014) Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories. Phys E Low Dimens Syst Nanostruct 57:179–192. doi:10.1016/j.physe.2013.10.034

    Article  ADS  MathSciNet  Google Scholar 

  44. Beni AA, Malekzadeh P (2012) Nonlocal free vibration of orthotropic non-prismatic skew nanoplates. Compos Struct 94:3215–3222

    Article  Google Scholar 

  45. Setoodeh AR, Malekzadeh P, Vosoughi AR (2011) Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory. Proc Inst Mech Eng Part C J Mech Eng Sci 1–11. doi:10.1177/0954406211428997

  46. Kiani K (2011) Nonlocal continuum-based modeling of a nanoplate subjected to a moving nanoparticle. Part II: parametric studies. Phys E Low Dimens Syst Nanostruct 44:249–269. doi:10.1016/j.physe.2011.08.021

    Article  ADS  Google Scholar 

  47. Cheng J, Yuan X, Zhao L et al (2004) GCMC simulation of hydrogen physisorption on carbon nanotubes and nanotube arrays. Carbon N Y 42:2019–2024. doi:10.1016/j.carbon.2004.04.006

    Article  Google Scholar 

  48. Robertson DH, Brenner DW, Mintmire JW (1992) Energetics of nanoscale graphitic tubules. Phys Rev B 45:12592

    Article  ADS  Google Scholar 

  49. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:10

    Article  MathSciNet  Google Scholar 

  50. Jin Y, Yuan FG (2003) Simulation of elastic properties of single-walled carbon nanotubes. Compos Sci Technol 63:1507–1515

    Article  Google Scholar 

  51. Behfar K, Naghdabadi R (2005) Nanoscale vibrational analysis of a multi-layered graphene sheet embedded in an elastic medium. Compos Sci Technol 65:1159–1164. doi:10.1016/j.compscitech.2004.11.011

    Article  Google Scholar 

  52. Striz AG, Wang X, Bert CW (1995) Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech 111:85–94. doi:10.1007/BF01187729

    Article  MATH  Google Scholar 

  53. Shu C (2000) Differential quadrature and its application in engineering. Springer, Berlin

    Book  MATH  Google Scholar 

  54. Shibuta Y, Elliott JA (2011) Interaction between two graphene sheets with a turbostratic orientational relationship. Chem Phys Lett 512:146–150. doi:10.1016/j.cplett.2011.07.013

    Article  ADS  Google Scholar 

  55. Shibuta Y, Maruyama S (2006) Molecular dynamics of the generation process of double-walled carbon nanotubes from peapods. Heat Transf Res 35:254–264. doi:10.1002/htj.20115

    Article  Google Scholar 

  56. Saito R, Matsuo R, Kimura T et al (2001) Anomalous potential barrier of double-wall carbon nanotube. Chem Phys Lett 348:187–193

    Article  ADS  Google Scholar 

  57. Walther JH, Jaffe R, Halicioglu T, Koumoutsakos P (2000) Molecular dynamics simulations of carbon nanotubes in water. Cent Turbul Res Proc Summer Progr 5–20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nazemnezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazemnezhad, R., Kamali, K. & Hosseini-Hashemi, S. Study on tensile-compressive and shear effects of van der Waals interactions on free vibration of bilayer graphene nanoribbons. Meccanica 52, 263–282 (2017). https://doi.org/10.1007/s11012-016-0394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0394-2

Keywords

Navigation