Skip to main content
Log in

Metal enhanced fluorescence of Ag-nanoshell dimer

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The plasmon modes of Ag-nanoshell dimer on metal enhanced fluorescence (MEF) are studied theoretically. The amplified excitation rate of a dimer (two identical Ag nanoshells) illuminated by a plane wave for exciting a molecule located at the gap center is calculated. Subsequently, the apparent quantum yield of the emission of the excited molecule affected by the dimer is investigated. The multiple multipole method is used for the both simulations. Finally, the enhancement factor of the dimer on the overall photoluminescence of the molecule in terms of the two parameters is evaluated. Our results show that Ag-nanoshell dimer is a dual-band photoluminescence enhancer for MEF at the bonding dipole and quadrupole modes. The former is broadband, and the latter narrowband. Both bands depend on the gap size. Moreover, the average enhancement factor of Ag-nanoshell dimer for MEF with a Stokes shift is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Tam, G.P. Goodrich, B.R. Johnson, N.J. Halas, Plasmonic enhancement of molecular fluorescence. Nano Lett. 7(2), 496–501 (2007)

    Article  ADS  Google Scholar 

  2. J. Zhang, Y. Fu, F. Jiang, J.R. Lakowicz, Dye-labeled silver nanoshell-bright particle. J. Phys. Chem. B 110, 8986–8991 (2006)

    Article  Google Scholar 

  3. G. Tovmachenko, C. Graf, D.J. van den Heuvel, A. van Blaaderen, H.C. Gerritsen, Fluorescence enhancement by metal-core/silica-shell nanoparticles. Adv. Mater. 18, 91–95 (2006)

    Article  Google Scholar 

  4. P. Anger, P. Bharadwaj, L. Novotny, Phys. Rev. Lett. 96, 113002 (2006)

    Article  ADS  Google Scholar 

  5. S. Kuhn, U. Hakanson, L. Rogobete, V. Sandoghdar, Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  6. J.-W. Liaw, J.-H. Chen, C.-S. Chen, M.-K. Kuo, Purcell effect of nanoshell dimer on single molecule’s fluorescence. Opt. Express 17(16), 13532–13540 (2009)

    Article  ADS  Google Scholar 

  7. A. Bek, R. Jansen, M. Ringler, S. Mayilo, A. Klar, J. Feldmann, Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 8, 485–490 (2008)

    Article  ADS  Google Scholar 

  8. J.-W. Liaw, C.-S. Chen, J.-H. Chen, Enhancement or quenching effect of metallic nanodimer on spontaneous emission. J. Quant. Spectrosc. Radiat. Transf. 111, 454–465 (2010)

    Article  ADS  Google Scholar 

  9. P.K. Jain, M.A. El-Sayed, Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153–164 (2010)

    Article  ADS  Google Scholar 

  10. G.P. Acuna, F.M. Möller, P. Holzmeister, S. Beater, B. Lalkens, P. Tinnefeld, Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338(6106), 506–510 (2012)

    Article  ADS  Google Scholar 

  11. S. Savasta, R. Saija, A. Ridolfo, O.D. Stefano, P. Denti, F. Borghes, Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna. ACS Nano 4(11), 6369–6376 (2010)

    Article  Google Scholar 

  12. Y. Fu, J. Zhang, J.R. Lakowicz, Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures. Langmuir 29, 2731–2738 (2013)

    Article  Google Scholar 

  13. J.-W. Liaw, Local field enhancement and quantum yield of metallic dimer. Jpn. J. Appl. Phys. 46(8A), 5373–5378 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.-W. Liaw, The quantum yield of a metallic nanoantenna. Appl. Phys. A 89, 357–362 (2007)

    Article  ADS  Google Scholar 

  15. J.-W. Liaw, Analysis of a bowtie nanoantenna for the enhancement of spontaneous emission. IEEE J. Sel. Top. Quantum 14(6), 1441–1447 (2008)

    Article  Google Scholar 

  16. S. Palomba, L. Novotny, Near-field imaging with a localized nonlinear light source. Nano Lett. 9, 3801–3804 (2009)

    Article  Google Scholar 

  17. M. Ringler, T.A. Klar, A. Schwemer, A.S. Susha, J. Stehr, G. Raschke, S. Funk, M. Borowski, A. Nichtl, K. Krzinger, R.T. Phillips, J. Feldmann, Moving nanoparticles with Raman scattering. Nano Lett. 7(9), 2753–2757 (2007)

    Article  ADS  Google Scholar 

  18. V. Faessler, C. Hrelescu, A.A. Lutich, L. Osinkina, S. Mayilo, F. Jackel, J. Feldmann, Accelerating fluorescence resonance energy transfer with plasmonic nanoresonators. Chem. Phys. Lett. 508, 67–70 (2011)

    Article  ADS  Google Scholar 

  19. J.B. Lassiter, J. Aizpurua, L.I. Hernandez, D.W. Brandl, I. Romero, S. Lal, J.H. Hafner, P. Nordlander, N.J. Halas, Close encounters between two nanoshells. Nano Lett. 8, 1212–1218 (2008)

    Article  ADS  Google Scholar 

  20. L.V. Brown, H. Sobhani, J.B. Lassiter, P. Nordlander, N.J. Halas, Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano 4(2), 819–832 (2010)

    Article  Google Scholar 

  21. C. Oubre, P. Nordlander, Finite-difference time-domain studies of the optical properties of nanoshell dimers. J. Phys. Chem. B 109, 10042–10051 (2005)

    Article  Google Scholar 

  22. C.G. Khoury, S.J. Norton, T. Vo-Dinh, Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3(9), 2776–2788 (2009)

    Article  Google Scholar 

  23. B.N. Khlebtsov, V.A. Khanadeyev, J. Ye, D.W. Mackowski, G. Borghs, N.G. Khlebtsov, Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Phys. Rev. B 77, 035440 (2008)

    Article  ADS  Google Scholar 

  24. Y.-W. Ma, J. Zhang, L.-H. Zhang, G.-S. Jian, S.-F. Wu, Theoretical analysis the optical properties of multi-coupled silver nanoshell particles. Plasmonics 6(4), 705–713 (2011)

    Article  Google Scholar 

  25. J.-W. Liaw, C.-L. Liu, M.-K. Kuo, Dual-band plasmonic enhancement of Ag-NS@SiO2 on gain medium’s spontaneous emission. Plasmonics 6, 673–680 (2011)

    Article  Google Scholar 

  26. C.G. Khoury, S.J. Norton, T. Vo-Dinh, Investigating the plasmonics of a dipole-excited silver nanoshell: Mie theory versus finite element method nanotechnology. Nanotechnology 21(31), 315203 (2010)

    Article  ADS  Google Scholar 

  27. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics (Artech. House, Boston, 1991)

    Google Scholar 

  28. P.B. Johnson, R.W. Christry, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    Article  ADS  Google Scholar 

  29. D.C. Marinica, A.K. Kazansky, P. Nordlander, J. Aizpurua, A.G. Borisov, Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. Nano Lett. 12, 1333–1339 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Council, Taiwan, R.O.C. (NSC 99-2221-E-182-030-MY3, NSC 100-2221-E-002-041-MY2) and Chang Gung Memorial Hospital (CMRPD290043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiunn-Woei Liaw or Mao-Kuen Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liaw, JW., Chen, HC., Chen, BR. et al. Metal enhanced fluorescence of Ag-nanoshell dimer. Appl. Phys. A 115, 45–52 (2014). https://doi.org/10.1007/s00339-013-7925-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7925-7

Keywords

Navigation