Skip to main content
Log in

Nanosecond laser ablation for pulsed laser deposition of yttria

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A thermal model to describe high-power nanosecond pulsed laser ablation of yttria (Y2O3) has been developed. This model simulates ablation of material occurring primarily through vaporization and also accounts for attenuation of the incident laser beam in the evolving vapor plume. Theoretical estimates of process features such as time evolution of target temperature distribution, melt depth and ablation rate and their dependence on laser parameters particularly for laser fluences in the range of 6 to 30 J/cm2 are investigated. Calculated maximum surface temperatures when compared with the estimated critical temperature for yttria indicate absence of explosive boiling at typical laser fluxes of 10 to 30 J/cm2. Material ejection in large fragments associated with explosive boiling of the target needs to be avoided when depositing thin films via the pulsed laser deposition (PLD) technique as it leads to coatings with high residual porosity and poor compaction restricting the protective quality of such corrosion-resistant yttria coatings. Our model calculations facilitate proper selection of laser parameters to be employed for deposition of PLD yttria corrosion-resistive coatings. Such coatings have been found to be highly effective in handling and containment of liquid uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.B. Chrisey, G.K. Hubler (eds.), Pulsed Laser Deposition of Thin Films (Wiley Interscience, New York, 1994)

    Google Scholar 

  2. M. Ali, T. Wagner, N. Shakoor, P.A. Molian, J. Laser Appl., 169–183 (2008)

  3. S. Besner, A.V. Kabashin, M. Meunier, Appl. Phys. A 88, 269–272 (2007)

    Article  ADS  Google Scholar 

  4. V. Zorba, N. Boukos, I. Zergioti, C. Fotakis, Appl. Opt. 47, 1846–1850 (2008)

    Article  ADS  Google Scholar 

  5. A. Bogaerts, Z. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta, Part B 58, 1867–1893 (2003)

    Article  ADS  Google Scholar 

  6. D. Bauerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)

    Book  Google Scholar 

  7. R.J. Gaboriaud, F. Pailloux, J. Perriere, Appl. Surf. Sci. 186, 477–482 (2002)

    Article  ADS  Google Scholar 

  8. C. Martinet, A. Pillonnet, J. Lancok, C. Garapon, J. Lumin. 126, 807–816 (2007)

    Article  Google Scholar 

  9. S.H. Lee, C.H. Cho, Y.S. Lee, H.S. Lee, J.G. Kim, Korean J. Chem. Eng. 27(6), 1786–1790 (2010)

    Article  Google Scholar 

  10. C. Tourneir, B. Lorrain, F.L. Guyadec, L. Coudurier, N. Eustathopoulos, J. Nucl. Mater. 254, 215–220 (1998)

    Article  ADS  Google Scholar 

  11. J.W. Koger, C.E. Holcombe, J.G. Banker, Thin Solid Films 39, 297–303 (1976)

    Article  ADS  Google Scholar 

  12. R.C. Ewing, Proc. Natl. Acad. Sci. 96, 3432–3439 (1999)

    Article  ADS  Google Scholar 

  13. T. Yoneoka, T. Terai, Y. Takahashi, J. Nucl. Mater. 248, 343–347 (1997)

    Article  ADS  Google Scholar 

  14. T. Terai, J. Nucl. Mater. 248, 153–158 (1997)

    Article  ADS  Google Scholar 

  15. Y. Song, I. Lee, D.Y. Lee, D. Kim, S. Kim, K. Lee, Mater. Sci. Eng. A 332, 129–133 (2002)

    Article  Google Scholar 

  16. X.Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 24, 1–10 (2004)

    Article  Google Scholar 

  17. G. Antou, F. Hlawaka, A. Cornet, C. Becker, D. Ruch, A. Riche, Surf. Coat. Technol. 200, 6062–6072 (2006)

    Article  Google Scholar 

  18. A. Shinozawa, K. Eguchi, M. Kambara, T. Yoshida, J. Therm. Spray Technol. 19(1–2), 190–197 (2010)

    Article  ADS  Google Scholar 

  19. A. Ichinose, A. Kikuchi, K. Tachikawa, S. Akita, Physica C 302, 51–56 (1998)

    Article  ADS  Google Scholar 

  20. J. Hudner, H. Ohlsen, E. Fredriksson, Vacuum 46, 967–970 (1995)

    Article  Google Scholar 

  21. A. Sawada, A. Suzuki, H. Maier, F. Koch, T. Terai, T. Muroga, Fusion Eng. Des. 75–79, 737–740 (2005)

    Article  Google Scholar 

  22. E.W. Kreutz, Appl. Surf. Sci. 127–129, 606–613 (1998)

    Article  Google Scholar 

  23. A.K. Singh, T.R.G. Kutty, S. Sinha, J. Nucl. Mater. 420, 374–381 (2012)

    Article  ADS  Google Scholar 

  24. S. Sinha, J. Nucl. Mater. 396, 257–263 (2010)

    Article  ADS  Google Scholar 

  25. S. Sinha, T.R.G. Kutty, P.V.A. Padmanabhan, K.G.K. Warrier, J. Laser Appl. 21, 149–153 (2009)

    Article  ADS  Google Scholar 

  26. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    ADS  Google Scholar 

  27. R. Kelly, A. Miotello, Nucl. Instrum. Methods Phys. Res. B 122, 374–400 (1997)

    Article  ADS  Google Scholar 

  28. M. Von Allmen, Laser Beam Interactions with Materials (Springer, Heidelberg, 1987)

    Book  Google Scholar 

  29. A.A. Morozov, Appl. Phys. A 79, 997–999 (2004)

    Article  ADS  Google Scholar 

  30. S. Zhang, R. Xiao, J. Appl. Phys. 83, 3842–3848 (1998)

    Article  ADS  Google Scholar 

  31. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199–208 (2001)

    Article  ADS  Google Scholar 

  32. R. Kelly, J. Chem. Phys. 92, 5047–5056 (1990)

    Article  ADS  Google Scholar 

  33. Z.D. Reed, M.A. Duncan, J. Phys. Chem. A 112, 5354–5362 (2008)

    Article  Google Scholar 

  34. K. Serivalsatit, B. Kokuoz, B.Y. Kokuoz, M. Kennedy, J. Ballato, J. Am. Ceram. Soc. 93(5), 1320–1325 (2010)

    Google Scholar 

  35. I. Barin, O. Knacke, Thermochemical Properties of Inorganic Substances (Springer, Berlin, 1977)

    Book  Google Scholar 

  36. D.L. Perry, S.L. Phillips, in Handbook of Inorganic Compounds (CRC Press, New York, 1995), p. 448

    Google Scholar 

  37. Y.A. Landa, Y.A. Polonskii, B.S. Glazachev, T.V. Milovidova, Ogneupory 2, 16–18 (1974) (All-Union Inst. Refract., Transl.)

    Google Scholar 

  38. FACT—FactSage 5.00 compound database (March 2001)

  39. A.V. Bulgakov, N.M. Bulgakova, Quantum Electron. 29(5), 433–437 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucharita Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, S. Nanosecond laser ablation for pulsed laser deposition of yttria. Appl. Phys. A 112, 855–862 (2013). https://doi.org/10.1007/s00339-013-7706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7706-3

Keywords

Navigation