Skip to main content
Log in

Diameter and location control of ZnO nanowires using electrodeposition and sodium citrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report single-step growth of spatially localized ZnO nanowires of controlled diameter to enable improved performance of piezoelectric devices such as nanogenerators. This study is the first to demonstrate the combination of electrodeposition with zinc nitrate and sodium citrate in the growth solution. Electrodeposition through a thermally-grown silicon oxide mask results in localization, while the growth voltage and solution chemistry are tuned to control the nanowire geometry. We observe a competition between lateral (relative to the (0001) axis) citrate-related morphology and voltage-driven vertical growth which enables this control. High aspect ratios result with either pure nitrate or nitrate-citrate mixtures if large voltages are used, but low growth voltages permit the growth of large diameter nanowires in solution with citrate. Measurements of the current density suggest a two-step growth process. An oxide mask blocks the electrodeposition, and suppresses nucleation of thermally driven growth, permitting single-step lithography on low cost p-type silicon substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Cobalt silicide coated wafers obtained from IBM.

References

  1. K.K. Keis, E. Magnusson, H. Lindstrom, S. Lindquist, A. Hagfeldt, Sol. Energy Mater. Sol. Cells 73(1), 51–58 (2002)

    Article  Google Scholar 

  2. M. Law, L.E. Greene, J.C. Johnson, R.J. Saykally, P.D. Yang, Nat. Mater. 4, 455–459 (2005)

    Article  ADS  Google Scholar 

  3. T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, Anal. Chem. 34(11), 1502–1503 (1962)

    Article  Google Scholar 

  4. A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, Jpn. J. Appl. Phys. 44(21), L643–L645 (2005)

    Article  ADS  Google Scholar 

  5. Y.R. Ryu, T.S. Lee, J.A. Lubguban, H.W. White, Y.S. Park, C.J. Youn, Appl. Phys. Lett. 87, 153504 (2005)

    Article  ADS  Google Scholar 

  6. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292(5523), 1897–1899 (2001)

    Article  ADS  Google Scholar 

  7. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291(5510), 1947–1949 (2001)

    Article  ADS  Google Scholar 

  8. L. Vayssieres, Adv. Mater. 15(5), 464–466 (2003)

    Article  Google Scholar 

  9. R.M. Wang, Y.J. Xing, J. Xu, D.P. Yu, New J. Phys. 5, 115 (2003)

    Article  ADS  Google Scholar 

  10. P. Gao, C. Ying, S. Wang, L. Ye, Q. Guo, Y. Xie, J. Nanopart. Res. 8(1), 131–136 (2006)

    Article  Google Scholar 

  11. A. Sugunan, V.K. Guduru, A. Uheida, M.S. Toprak, M. Muhammed, J. Am. Ceram. Soc. 93(11), 3740–3744 (2010)

    Article  Google Scholar 

  12. J.C. Johnson, H. Yan, P. Yang, R.J. Saykally, J. Phys. Chem. B 107(34), 8816–8828 (2003)

    Article  Google Scholar 

  13. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7(8), 2183–2187 (2007)

    Article  ADS  Google Scholar 

  14. J.W.P. Hsu, Z.R. Tian, N.C. Simmons, C.M. Matzke, J.A. Voigt, J. Liu, Nano Lett. 5(1), 83–86 (2005)

    Article  ADS  Google Scholar 

  15. K. Chen, T. Fang, F. Hung, L. Ji, S. Chang, S. Young, Y. Hsiao, Appl. Surf. Sci. 254(18), 5791–5795 (2008)

    Article  ADS  Google Scholar 

  16. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2(12), 821–826 (2003)

    Article  ADS  Google Scholar 

  17. X. Wang, J. Song, J. Liu, Z.L. Wang, Science 316, 102 (2007)

    Article  ADS  Google Scholar 

  18. Z.L. Wang, Adv. Funct. Mater. 18(22), 3553–3567 (2008)

    Article  Google Scholar 

  19. M.H. Wong, A. Berenov, X. Qi, M.J. Kappers, Z.H. Barber, B. Illy, Z. Lockman, M.P. Ryan, J.L. MacManus-Driscoll, Nanotechnology 14(9), 968–973 (2003)

    Article  ADS  Google Scholar 

  20. J. Cui, U.J. Gibson, J. Phys. Chem. B 109, 22074–22077 (2005)

    Article  Google Scholar 

  21. J. Cui, J. Mater. Sci., Mater. Electron. 19, 908–914 (2008)

    Article  Google Scholar 

  22. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575–2591 (2004)

    Article  Google Scholar 

  23. J. Lee, S. Nam, Y. Tak, Korean J. Chem. Eng. 22(1), 161–164 (2005)

    Article  Google Scholar 

  24. R. Tena-Zaera, J. Elias, C. Lévy-Clément, I. Mora-Seró, Y. Luo, J. Bisquert, Phys. Status Solidi A 205(10), 2345–2350 (2008)

    Article  ADS  Google Scholar 

  25. A.C. Cruickshank, S.E.R. Tay, B.N. Illy, R. Da Campo, S. Schumann, T.S. Jones, S. Heutz, M.A. McLachlan, D.W. McComb, D.J. Riley, M.P. Ryan, Chem. Mater. 23(17), 3863–3870 (2011)

    Article  Google Scholar 

  26. A. Sugunan, H.C. Warad, M. Boman, J. Dutta, J. Sol-Gel Sci. Technol. 39, 49–56 (2006)

    Article  Google Scholar 

  27. J. Cui, U. Gibson, Nanotechnology 18(15), 155302 (2007)

    Article  ADS  Google Scholar 

  28. Y.-J. Kim, C.-H. Lee, Y.J. Hong, G.-C. Yi, S.S. Kim, H. Cheong, Appl. Phys. Lett. 89(16), 163128 (2006)

    Article  ADS  Google Scholar 

  29. T.K. Shing, H.H. Pan, I.-C. Chen, C.I. Kuo, J. Sci. Eng. 7(3), 135–138 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Charles Daghlian for his expert assistance with the SEM and Dr. James Slinkman for providing us with the cobalt silicide wafers from IBM. We are grateful for the partial support of the Dartmouth College Thomas E. Anderson, Sr. GP’96,’09 Fund for Undergraduate Research and the Thayer School of Engineering at Dartmouth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula J. Gibson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lifson, M.L., Levey, C.G. & Gibson, U.J. Diameter and location control of ZnO nanowires using electrodeposition and sodium citrate. Appl. Phys. A 113, 243–247 (2013). https://doi.org/10.1007/s00339-012-7538-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7538-6

Keywords

Navigation