Skip to main content
Log in

Effect of implantation temperature on the blistering behavior of hydrogen implanted GaN

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

GaN epitaxial layers were implanted by 100 keV H+ ions at different implantation temperatures (LN2, RT and 300 °C) with a fluence of 2.5×1017 cm−2. The implanted samples were characterized using Nomarski optical microscopy, AFM, XRD, and TEM. Topographical investigations of the implanted surface revealed the formation of surface blistering in the as-implanted samples at 300 °C and after annealing at higher temperature for the implantation at LN2 and RT. The physical dimensions of the surface blisters/craters were dependent on the implantation temperature. XRD showed the dependence of damage-induced stress on the implantation temperature with higher stress for the implantation at 300 °C. TEM investigations revealed the formation of a damage band in all the cases. The damage band was filled with large area microcracks for the implantation at 300 °C, which were responsible for the as-implanted surface blistering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O. Moutanabbir, R. Scholz, U. Gösele, A. Guittoum, M. Jungmann, M. Butterling, R.K. Rehberg, W. Anwand, W. Egger, P. Sperr, Phys. Rev. B 81, 115205 (2010)

    Article  ADS  Google Scholar 

  2. H.J. Woo, H.W. Choi, W. Hong, J.H. Park, C.H. Eum, Surf. Coat. Technol. 203, 2375 (2009)

    Article  Google Scholar 

  3. R. Singh, I. Radu, U. Gösele, S. Christiansen, Phys. Status Solidi C 3, 1754 (2006)

    Article  ADS  Google Scholar 

  4. M. Bruel, Electron. Lett. 31, 1201 (1995)

    Article  Google Scholar 

  5. U. Dadwal, A. Kumar, R. Scholz, M. Reiche, P. Kumar, G. Boehm, M.C. Amann, R. Singh, Semicond. Sci. Technol. 26, 085032 (2011)

    Article  ADS  Google Scholar 

  6. O. Moutanabbir, U. Gösele, J. Electron. Mater. 39, 482 (2010)

    Article  ADS  Google Scholar 

  7. I. Radu, R. Singh, R. Scholz, U. Gösele, S. Christiansen, G. Brüderl, C. Eichler, V. Härle, Appl. Phys. Lett. 89, 031912 (2006)

    Article  ADS  Google Scholar 

  8. E. Padilla, M. Jackson, M.S. Goorsky, ECS Trans. 33, 263 (2010)

    Article  Google Scholar 

  9. O. Moutanabbir, S. Senz, R. Scholz, S. Christiansen, M. Reiche, A. Avramescu, U. Strauss, U. Gösele, Electrochem. Solid-State Lett. 12, H105 (2009)

    Article  Google Scholar 

  10. P. Kumar, G. Rodrigues, P.S. Lakshmy, D. Kanjilal, B.P. Singh, R. Kumar, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 252, 354 (2006)

    Article  ADS  Google Scholar 

  11. J.D. Plummer, D.D. Michael, B.P. Griffin, Silicon VLSI Technology (Prentice-Hall, Englewood Cliffs, 2000)

    Google Scholar 

  12. U. Littmark, J.F. Ziegler, Phys. Rev. A 23, 64 (1981)

    Article  ADS  Google Scholar 

  13. J.K. Lee, M. Nastasi, N.D. Theodore, A. Smalley, T.L. Alford, J.W. Mayer, M. Cai, S.S. Lau, J. Appl. Phys. 96, 280 (2004)

    Article  ADS  Google Scholar 

  14. J.K. Lee, Y. Lin, Q.X. Jia, T. Höchbauer, H.S. Jung, L. Shao, A. Misra, M. Nastasi, Appl. Phys. Lett. 89, 101901 (2006)

    Article  ADS  Google Scholar 

  15. C. Kisielowski, J. Krüger, S. Ruvimov, T. Suski, J.W. Ager III, E. Jones, Z.L. Weber, M. Rubin, E.R. Weber, M.D. Bremser, R.F. Davis, Phys. Rev. B 54, 17745 (1996)

    Article  ADS  Google Scholar 

  16. M. Nastasi, T. Höchbauer, J.K. Lee, A. Misra, J.P. Hirth, M. Ridgway, T. Lafford, Appl. Phys. Lett. 86, 154102 (2005)

    Article  ADS  Google Scholar 

  17. C. Coupeau, E. Dion, M.L. David, J. Colin, J. Grilhé, Europhys. Lett. 92, 16001 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the Max Planck Society (MPS), Germany, under the cooperation scheme of the Max Planck India Partner Group. The authors would like to thank Mrs. S. Hopfe from Max Planck Institute of Microstructure Physics, Halle, Germany, for cross-sectional TEM specimen preparation. Dr. D. Kanjilal is gratefully acknowledged for his help and cooperation during the ion implantation work. Ms. B. Sweta is thanked for helpful discussion related to AFM measurements. U. Dadwal is thankful to the MPS, Germany, for the Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Dadwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadwal, U., Scholz, R., Reiche, M. et al. Effect of implantation temperature on the blistering behavior of hydrogen implanted GaN. Appl. Phys. A 112, 451–456 (2013). https://doi.org/10.1007/s00339-012-7429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7429-x

Keywords

Navigation