Skip to main content
Log in

Defects induced by MeV H+ implantation for exfoliating of free-standing GaN film

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-energy ion slicing is promising to produce the free-standing GaN films with thickness in the range of 10–20 µm, which would promote the mass applications of GaN substrates. In this paper, bulk GaN was implanted by 1.6 MeV H ions with the mean projected range Rp of around 17 μm and the thermal evolution of the H-induced defects was investigated in detail. Due to the migration-coalescence mechanism, the H-induced point defects gather to form the initial cavity defects which grow up via the Ostwald ripening mechanism. The cavity defect distribution is determined by the distributions of the implanted hydrogen and the implantation-induced damages. The area ratio of cavity defects in the center damage band of the 1.6 MeV sample was around 3.4%. Annealing at higher temperature enhances the defect migration and recovery. Larger H ion fluence or higher annealing temperature is required to accomplish the exfoliation of a free-standing GaN thick film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.A. Ponce, D.P. Bour, Nature 386, 351 (1997)

    ADS  Google Scholar 

  2. P.G. Neudeck, R.S. Okojie, L.Y. Chen, Proc. IEEE 90, 1065 (2002)

    Google Scholar 

  3. T. Kachi, Jpn. J. Appl. Phys. 53, 100210 (2014)

    ADS  Google Scholar 

  4. S. Nakamura, M.R. Krames, Proc. IEEE 101, 2211 (2013)

    Google Scholar 

  5. B. Shen, Y.G. Zhou, Z.Z. Chen, P. Chen, R. Zhang, Y. Shi, Y.D. Zheng, W. Tong, W. Park, Appl. Phys. A 68, 593 (1999)

    ADS  Google Scholar 

  6. J. Sun, J. Chen, X. Wang, J. Wang, W. Liu, J. Zhu, H. Yang, Appl. Phys. A Mater. Sci. Process 89, 177 (2007)

    Google Scholar 

  7. B.J. Zhang, Y. Liu, Chin. Sci. Bull. 59, 1251 (2014)

    Google Scholar 

  8. H. Amano, Jpn. J. Appl. Phys. 52, 050001 (2013)

    ADS  Google Scholar 

  9. M. Bruel, Electron. Lett. 31, 1201 (1995)

    Google Scholar 

  10. G.K. Celler, S. Cristoloveanu, J. Appl. Phys. 93, 4955 (2003)

    ADS  Google Scholar 

  11. J.M. Zahler, K. Tanabe, C. Ladous, T. Pinnington, F.D. Newman, H.A. Atwater, Appl. Phys. Lett. 91, 012108 (2007)

    ADS  Google Scholar 

  12. Q.Y. Tong, Y.L. Chao, L.J. Huang, U. Gosele, Electron. Lett. 35, 341 (1999)

    Google Scholar 

  13. H.J. Woo, H.W. Choi, W. Hong, J.H. Park, C.H. Eum, Surf. Coat. Technol. 203, 2375 (2009)

    Google Scholar 

  14. S.O. Kucheyev, J.S. Williams, C. Jagadish, J. Zou, G. Li, J. Appl. Phys. 91, 3928 (2002)

    ADS  Google Scholar 

  15. U. Dadwal, R. Scholz, M. Reiche, P. Kumar, S. Chandra, R. Singh, Appl. Phys. A Mater. Sci. Process 112, 451 (2013)

    ADS  Google Scholar 

  16. M.G. Weinstein, C.Y. Song, M. Stavola, S.J. Pearton, R.G. Wilson, R.J. Shul, K.P. Killeen, M.J. Ludowise, Appl. Phys. Lett. 72, 1703 (1998)

    ADS  Google Scholar 

  17. O. Moutanabbir, Y.J. Chabal, M. Chicoine, S. Christiansen, R. Krause-Rehberg, F. Schiettekatte, R. Scholz, O. Seitz, S. Senz, F. Susskraut, U. Gosele, Nucl. Instrum. Methods Phys. Res. Sect. B 267, 1264 (2009)

    ADS  Google Scholar 

  18. I. Radu, R. Singh, R. Scholz, U. Gosele, S. Christiansen, G. Bruderl, C. Eichler, V. Harle, Appl. Phys. Lett. 89, 031912 (2006)

    ADS  Google Scholar 

  19. O. Moutanabbir, R. Scholz, U. Gosele, A. Guittoum, M. Jungmann, M. Butterling, R. Krause-Rehberg, W. Anwand, W. Egger, P. Sperr, Phys. Rev. B 81, 115205 (2010)

    ADS  Google Scholar 

  20. A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J.F. Michaud, A.M. Charvet, L. Di Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, N. Kernevez, Electron. Lett. 41, 668 (2005)

    Google Scholar 

  21. O. Moutanabbir, U. Gosele, J. Electron. Mater. 39, 482 (2010)

    ADS  Google Scholar 

  22. R.B.K. Chung, D. Kim, S.K. Lim, J.S. Choi, K.J. Kim, B.H. Lee, K.S. Jung, H.J. Kim-Lee, W.J. Lee, B. Park, K. Woo, Appl. Phys. Express 6, 111005 (2013)

    ADS  Google Scholar 

  23. O. Moutanabbir, S. Senz, R. Scholz, S. Christiansen, M. Reiche, A. Avramescu, U. Strauss, U. Gosele, Electrochem. Solid-State Lett. 12, H105 (2009)

    Google Scholar 

  24. H. Assaf, E. Ntsoenzok, Nucl. Instrum. Methods Phys. Res. Sect. B 240, 183 (2005)

    ADS  Google Scholar 

  25. C. Braley, F. Mazen, A. Tauzin, F. Rieutord, C. Deguet, E. Ntsoenzok, Nucl. Instrum. Methods Phys. Res. Sect. B 277, 93 (2012)

    ADS  Google Scholar 

  26. V.P. Amarasinghe, L. Wielunski, A. Barcz, L.C. Feldman, G.K. Celler, ECS J. Solid State Sci. Technol. 3, P37 (2014)

    Google Scholar 

  27. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818 (2010)

    ADS  Google Scholar 

  28. H. Yamane, M. Shimada, S.J. Clarke, F.J. DiSalvo, Chem. Mater. 9, 413 (1997)

    Google Scholar 

  29. H.-C. Huang, J.I. Dadap, O. Gaathon, I.P. Herman, R.M. Osgood, S. Bakhru, H. Bakhru, Opt. Mater. Express 3, 126 (2013)

    ADS  Google Scholar 

  30. H. Harima, J. Phys. Condens. Matter. 14, R967 (2002)

    ADS  Google Scholar 

  31. X. Wang, Y.W. Zhang, S.Y. Liu, Z.Q. Zhao, Nucl. Instrum. Methods Phys. Res. Sect. B 319, 55 (2014)

    ADS  Google Scholar 

  32. J.G. Swadener, M.I. Baskes, M. Nastasi, Phys. Rev. B 72(R), 201202 (2005)

    ADS  Google Scholar 

  33. H.Y. Xiao, F. Gao, X.T. Zu, W.J. Weber, J. Appl. Phys. 105, 123527 (2009)

    ADS  Google Scholar 

  34. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, F.A. Garner, Nucl. Instrum. Methods Phys. Res. Sect. B 310, 75 (2013)

    ADS  Google Scholar 

  35. S. Frabboni, F. Corni, C. Nobili, R. Tonini, G. Ottaviani, Phys. Rev. B 69, 165209 (2004)

    ADS  Google Scholar 

  36. U. Dadwal, R. Singh, Appl. Phys. Lett. 102, 081606 (2013)

    ADS  Google Scholar 

  37. X. Ou, R. Kogler, A. Mucklich, W. Skorupa, W. Moller, X. Wang, L. Vines, Appl. Phys. Lett. 94, 011903 (2009)

    ADS  Google Scholar 

  38. M. Dumont, G. Regula, M.V. Coulet, M.F. Beaufort, E. Ntsoenzok, B. Pichaud, Mater. Sci. Eng. B 182, 45 (2014)

    Google Scholar 

  39. S. Reiss, K.H. Heinig, Nucl. Instrum. Methods Phys. Res. Sect. B 84, 229 (1994)

    ADS  Google Scholar 

  40. J. Grisolia, A. Claverie, G. Ben Assayag, S. Godey, E. Ntsoenzok, F. Labhom, A. Van Veen, J. Appl. Phys. 91, 9027 (2002)

    ADS  Google Scholar 

  41. H. Schroeder, P.F.P. Fichtner, J. Nucl. Mater. 179, 1007 (1991)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0404100). We acknowledge that the high energy ion implantation was performed at the Ion Beam Center of Helmholtz-Zentrum Dresden-Rossendorf.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 922 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, K., You, T., Jia, Q. et al. Defects induced by MeV H+ implantation for exfoliating of free-standing GaN film. Appl. Phys. A 124, 118 (2018). https://doi.org/10.1007/s00339-017-1508-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1508-y

Navigation