Skip to main content
Log in

Swift heavy ion provoked structural, optical and electrical properties in SnO2 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SnO2 thin films grown on glass substrates at 300 C by reactive thermal evaporation and annealed at 600 C were irradiated by 120 MeV Ag9+ ions. Though irradiation is known to induce lattice disorder and suppression of crystallinity, we observe grain growth at a certain fluence of irradiation. X-ray diffraction (XRD) revealed the crystalline nature of the films. The particle size estimated by Scherrer’s formula for the irradiated films was in the range 10–25 nm. The crystallite size increases with increase in fluence up to 1×1012 ions cm−2, whereas after that the size starts decreasing. Atomic force microscope (AFM) results showed the surface modification of nanostructures for films irradiated with fluences of 1×1011 ions cm−2 to 1×1013 ions cm−2. The UV–visible spectrum showed the band gap of the irradiated films in the range of 3.56 eV–3.95 eV. The resistivity decreases with fluence up to 5×1012 ions cm−2 and starts increasing after that. Rutherford Backscattering (RBS) reveals the composition of the films and sputtering of ions due to irradiation at higher fluence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.L. Wang, Z.C. Kang, Functional and Smart Materials (Plenum, New York, 1998)

    Book  Google Scholar 

  2. R. Outemzabet, N. Bouras, N. Kesri, Thin Solid Films 515, 6518–6520 (2007)

    Article  ADS  Google Scholar 

  3. E. Dien, J.M. Laurent, A. Smith, J. Eur. Ceram. Soc. 19, 787 (1999)

    Article  Google Scholar 

  4. W. Spence, J. Appl. Phys. 38, 3767 (1967)

    Article  ADS  Google Scholar 

  5. S.F. Cogan, E.J. Andersson, T.D. Plante, R.D. Rauh, Appl. Opt. 24, 2282 (1985)

    Article  ADS  Google Scholar 

  6. J. Isidorsson, C.G. Granqvist, Sol. Energy Mater. Sol. Cells 44, 375 (1996)

    Article  Google Scholar 

  7. J.S.E.M. Svensson, C.G. Granqvist, Sol. Energy Mater. 12, 391 (1985)

    Article  Google Scholar 

  8. J.S. Williams, J.M. Poate, Ion Implantation and Beam Process (Academic Press, New York, 1984)

    Google Scholar 

  9. P.D. Townsend, P.J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, Cambridge, 1994)

    Book  Google Scholar 

  10. S. Ghosh, M. Mader, R. Grotzschel, A. Gupta, T. Som, Appl. Phys. Lett. 89, 104104 (2006)

    Article  ADS  Google Scholar 

  11. S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, V. Ganesan, T. Shripathi, U.P. Deshpande, Appl. Phys. A 94, 703 (2009)

    Article  ADS  Google Scholar 

  12. D.C. Agarwal, A. Kumar, S.A. Khan, D. Kabiraj, F. Singh, A. Tripathi, J.C. Pivin, R.S. Chauhan, D.K. Avasthi, Nucl. Instrum. Methods Phys. Res. B 244, 136 (2006)

    Article  ADS  Google Scholar 

  13. M. Kumar, F. Singh, S.A. Khan, V. Baranwal, S. Kumar, D.C. Agarwal, A.M. Siddiqui, A. Tripathi, A. Gupta, D.K. Avasthi, A.C. Pandey, J. Phys. D, Appl. Phys. 38, 637 (2005)

    Article  ADS  Google Scholar 

  14. M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 216, 1 (2004)

    Article  ADS  Google Scholar 

  15. K.R. Nagabhushana, B.N. Lakshminarasappa, K. Narasimha Rao, F. Singh, I. Sulania, Nucl. Instrum. Methods Phys. Res. B 266, 1049 (2008)

    Article  ADS  Google Scholar 

  16. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  ADS  Google Scholar 

  17. M.S. Kamboj, G. Kaur, R. Thangaraj, D.K. Avasthi, J. Phys. D 35, 477 (2002)

    Article  ADS  Google Scholar 

  18. K.L. Narayanan, K.P. Vijayakumar, K.G.M. Nair, N.S. Thampi, Physica B 240, 8 (1997)

    Article  ADS  Google Scholar 

  19. M. Batzill, U. Diebold, Prog. Surf. Sci. 79, 47 (2005)

    Article  ADS  Google Scholar 

  20. C. Ke, Z. Yang, J.S. Pan, W. Zhu, L. Wang, Appl. Phys. Lett. 97, 092101 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank IUAC for the project UFUP-48314. The authors express their sincere thanks to the pelletron group, Mr. S. Ohja, and the Materials Science Group, Inter University Accelerator Centre, New Delhi, India, for their help during the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sathyamoorthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abhirami, K.M., Matheswaran, P., Gokul, B. et al. Swift heavy ion provoked structural, optical and electrical properties in SnO2 thin films. Appl. Phys. A 111, 1175–1180 (2013). https://doi.org/10.1007/s00339-012-7337-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7337-0

Keywords

Navigation