Skip to main content
Log in

Chemical bonding assisted damage production in single-walled carbon nanotubes induced by low-energy ions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using first-principles molecular dynamics (MD) and classical MD simulations, we investigate the minimum energy required for various incident ions to displace a carbon atom in single-walled carbon nanotubes (CNTs), which is a key parameter to characterize the damage capability of the incident ion. The role of chemical aspects of incident ions played in the damage production mechanism was analyzed in details. The results indicate that the chemical bonding properties of impinging ions could greatly lower the threshold displacement energy of carbon atoms in CNTs, and thus considerably enhance their damage capabilities compared to those chemically inactive ions. The strong chemical interactions existing between ions and nanotubes can considerably increase the amount of damages, which is in contrast with the conventional conclusion that the damage yield increases monotonically with the atomic number of incident ion owing to its dependence on the cross section of defect production. This chemical bonding assisted damage process is clearly different from the damage process resulted only from physical collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. R.H. Baughman, A.A. Zakhidov, W.A. de Heer, Science 297, 787 (2002)

    Article  ADS  Google Scholar 

  3. P.L. McEuen, Nature (London) 393, 15 (1998)

    Article  ADS  Google Scholar 

  4. Y.J. Jung, Y. Homma, R. Vajtai, Y. Kobayashi, T. Ogino, P.M. Ajayan, Nano Lett. 4, 1109 (2004)

    Article  ADS  Google Scholar 

  5. S. Talapatra, P.G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S.C. Deevi, P.M. Ajayan, Phys. Rev. Lett. 95, 97201 (2005)

    Article  ADS  Google Scholar 

  6. C. Gomez-Navarro, P.J. De Pablo, J. Gomez-Herrero, B. Biel, F.J. Garcia-Vidal, A. Rubio, F. Flores, Nat. Mater. 4, 534 (2005)

    Article  ADS  Google Scholar 

  7. I. Jang, S.B. Sinnott, D. Danailov, P. Keblinski, Nano Lett. 4, 109 (2003)

    Article  ADS  Google Scholar 

  8. A. Kis, G. Csanyi, J.P. Salvetat, T.N. Lee, E. Couteau, A. Kulik, W. Benoit, J. Brugger, L. Forro, Nat. Mater. 3, 153 (2004)

    Article  ADS  Google Scholar 

  9. M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, P.M. Ajayan, Science 288, 1226 (2000)

    Article  ADS  Google Scholar 

  10. T.D. Yuzvinsky, W. Mickelson, S. Aloni, G.E. Begtrup, A. Kis, A. Zettl, Nano Lett. 6, 2718 (2006)

    Article  ADS  Google Scholar 

  11. A.V. Krasheninnikov, K. Nordlund, J. Keinonen, F. Banhart, Phys. Rev. B 66, 245403 (2002)

    Article  ADS  Google Scholar 

  12. M.S. Raghuveer, P.G. Ganesan, J. D’Arcy-Gall, G. Ramanath, M. Marshall, I. Petrov, Appl. Phys. Lett. 84, 4484 (2004)

    Article  ADS  Google Scholar 

  13. M. Suzuki, K. Ishibashi, K. Toratani, D. Tsuya, Y. Aoyagi, Appl. Phys. Lett. 81, 2273 (2002)

    Article  ADS  Google Scholar 

  14. S.K. Pregler, S.B. Sinnott, Phys. Rev. B 73, 224106 (2006)

    Article  ADS  Google Scholar 

  15. J. Kotakoski, A.V. Krasheninnikov, Y. Ma, A.S. Foster, K. Nordlund, R.M. Nieminen, Phys. Rev. B 71, 205408 (2005)

    Article  ADS  Google Scholar 

  16. J. Kotakoski, J.A.V. Pomoell, A.V. Krasheninnikov, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 228, 31 (2005)

    Article  ADS  Google Scholar 

  17. C. Morant, J. Andrey, P. Prieto, D. Mendiola, J.M. Sanz, E. Elizalde, Phys. Status Solidi A 203, 1069 (2006)

    Article  ADS  Google Scholar 

  18. F. Xu, M. Minniti, P. Barone, A. Sindona, A. Bonanno, A. Oliva, Carbon 46, 1489 (2008)

    Article  Google Scholar 

  19. J. Kotakoski, A.V. Krasheninnikov, K. Nordlund, Nucl. Instrum. Methods Phys. Res. B 240, 810 (2005)

    Article  ADS  Google Scholar 

  20. B. Ni, R. Andrews, D. Jacques, D. Qian, M.B.J. Wijesundara, Y. Choi, L. Hanley, S.B. Sinnott, J. Phys. Chem. B 105, 12719 (2001)

    Article  Google Scholar 

  21. M.J. Norgett, M.T. Robinson, I.M. Torrens, Nucl. Eng. Des. 33, 50 (1975)

    Article  Google Scholar 

  22. A.V. Krasheninnikov, K. Nordlund, J. Appl. Phys. 107, 071301 (2010)

    Article  ADS  Google Scholar 

  23. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985)

    Google Scholar 

  24. G.D. Saraiva, A.G. Souza Filho, G. Braunstein, E.B. Barros, J. Mendes Filho, E.C. Moreira, S.B. Fagan, D.L. Baptista, Y.A. Kim, H. Muramatsu, M. Endo, M.S. Dresselhaus, Phys. Rev. B 80, 155452 (2009)

    Article  ADS  Google Scholar 

  25. D.Q. Yang, J.F. Rochette, E. Sacher, Langmuir 21, 8539 (2005)

    Article  Google Scholar 

  26. J.F. Ziegler, Nucl. Instrum. Methods Phys. Res. B 219, 1027 (2004)

    Article  ADS  Google Scholar 

  27. Z. Xu, W. Zhang, Z. Zhu, P. Huai, Nanotechnology 20, 125706 (2009)

    Article  ADS  Google Scholar 

  28. J. Pomoell, A.V. Krasheninnikov, K. Nordlund, J. Keinonen, Nucl. Instrum. Methods Phys. Res. B 206, 18 (2003)

    Article  ADS  Google Scholar 

  29. R. Car, M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)

    Article  ADS  Google Scholar 

  30. C. Jin, H. Lan, L. Peng, K. Suenaga, S. Iijima, Phys. Rev. Lett. 102, 205501 (2009)

    Article  ADS  Google Scholar 

  31. A.D. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  32. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  33. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  34. S. Nosé, Mol. Phys. 52, 255 (1984)

    Article  ADS  Google Scholar 

  35. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  36. V.H. Crespi, N.G. Chopra, M.L. Cohen, A. Zettl, S.G. Louie, Phys. Rev. B 54, 5927 (1996)

    Article  ADS  Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  MATH  Google Scholar 

  38. S.J. Stuart, A.B. Tutein, J.A. Harrison, J. Chem. Phys. 112, 6472 (2000)

    Article  ADS  Google Scholar 

  39. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys., Condens. Matter 14, 783 (2002)

    Article  ADS  Google Scholar 

  40. K.D. Krantzman, Z. Postawa, B.J. Garrison, N. Winograd, S.J. Stuart, J.A. Harrison, Nucl. Instrum. Methods Phys. Res. B 180, 159 (2001)

    Article  ADS  Google Scholar 

  41. B. Ni, S.B. Sinnott, P.T. Mikulski, J.A. Harrison, Phys. Rev. Lett. 88, 205505 (2002)

    Article  ADS  Google Scholar 

  42. J.A.V. Pomoell, A.V. Krasheninnikov, K. Nordlund, J. Keinonen, J. Appl. Phys. 96, 2864 (2004)

    Article  ADS  Google Scholar 

  43. A.F. Fonseca, T. Borders, R.H. Baughman, K. Cho, Phys. Rev. B 81, 045429 (2010)

    Article  ADS  Google Scholar 

  44. J. Tersoff, Phys. Rev. B 39, 5566 (1989)

    Article  ADS  Google Scholar 

  45. K. Matsunaga, C. Fisher, H. Matsubara, Jpn. J. Appl. Phys. 39, L48 (2000)

    Article  ADS  Google Scholar 

  46. A.V. Krasheninnikov, F. Banhart, J.X. Li, A.S. Foster, R.M. Nieminen, Phys. Rev. B 72, 125428 (2005)

    Article  ADS  Google Scholar 

  47. S.S. Zumdah, S.A. Zumdahl, Chemistry, 5th edn. (Houghton Mifflin, Boston, 2000)

    Google Scholar 

  48. A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)

    Article  ADS  Google Scholar 

  49. R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B 64, 085413 (2001)

    Article  ADS  Google Scholar 

  50. S.B. Fagan, A.J.R. da Silva, R. Mota, R.J. Baierle, A. Fazzio, Phys. Rev. B 67, 033405 (2003)

    Article  ADS  Google Scholar 

  51. H.H. Jiang, D.J. Zhang, R.X. Wang, Nanotechnology 20, 145501 (2009)

    Article  ADS  Google Scholar 

  52. A.V. Krasheninnikov, Y. Miyamoto, D. Tománek, Phys. Rev. Lett. 99, 16104 (2007)

    Article  ADS  Google Scholar 

  53. M. Huhtala, A.V. Krasheninnikov, J. Aittoniemi, S.J. Stuart, K. Nordlund, K. Kaski, Phys. Rev. B 70, 045404 (2004)

    Article  ADS  Google Scholar 

  54. J. Tersoff, Phys. Rev. B 37, 6991 (1988)

    Article  ADS  Google Scholar 

  55. M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.), Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)

    Google Scholar 

  56. F. Banhart, Rep. Prog. Phys. 62, 1181 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by NSFC (Grant No. 10975009) and by the Ministry of Science and Technology of China (Grant No. 2010CB832904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianming Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, S., Xue, J., Wang, Y. et al. Chemical bonding assisted damage production in single-walled carbon nanotubes induced by low-energy ions. Appl. Phys. A 108, 313–320 (2012). https://doi.org/10.1007/s00339-012-6955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6955-x

Keywords

Navigation