Skip to main content
Log in

Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide and titanium dioxide composite thin films were prepared on Corning 7059 glass substrates by co-sputtering. The reactive gas-surroundings used was ultrahigh purity oxygen. To analyze the structural, optical and photocatalytic properties of the ZnO–TiO2 samples, X-ray diffraction (XRD), atomic force microscopy (AFM), optical absorption, Raman spectroscopy and methylene blue bleaching were carried out at room temperature. XRD patterns indicate the presence of TiO2 (anatase and rutile phases), ZnO, ZnTiO3, and Zn2TiO4 crystalline structures. AFM images allow the observation of non-homogeneous surface in the ZnO–TiO2 system, suggesting the separation of different crystalline phases in the composite. Raman studies exhibit different spectra in the films depending on the area analyzed, which can be interpreted as a result of the existence of well separated crystalline regions as seen in AFM images. The photocatalytic activity (PA) of TiO2–ZnO–ZnTiO3–Zn2TiO4 composite, as expected for adequate coupling semiconductors, is larger than PA of ZnO and TiO2 oxides, used as references. A simple proposal about the probable alignment of the conduction band, the valence band, and the Fermi level is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Jing, B. Xin, F. Yuan, B. Wang, H. Fu, J. Phys. Chem. B 110, 17860 (2006)

    Article  Google Scholar 

  2. S. Janitabar-Darzi, A.R. Mahjoub, J. Alloys Compd. 486, 805 (2009)

    Article  Google Scholar 

  3. S.A. Mayén-Hernández, G. Torres-Delgado, R. Castanedo-Pérez, J.G. Mendoza- Alvarez, O. Zelaya-Angel, J. Adv. Oxid. Technol. 10, 90 (2007)

    Google Scholar 

  4. G. Marci, V. Augugliario, M.J. López-Muñoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, A.M. Venezia, J. Phys. Chem. B 105, 1033 (2001)

    Article  Google Scholar 

  5. Y. Gui, S. Li, J. Xu, C. Li, Microelectron. J. 39, 1120 (2008)

    Article  Google Scholar 

  6. R.S. Mane, W.J. Lee, H.M. Pathan, S.H. Han, J. Phys. Chem. B 109, 24254 (2005)

    Article  Google Scholar 

  7. S.H. Hwang, J. Song, Y. Jung, O.Y. Kweon, H. Song, J. Jang, Chem. Commun. 47, 9164 (2011)

    Article  Google Scholar 

  8. Z. Zhang, Y. Yuan, Y. Fang, L. Liang, H. Ding, L. Jing, Talanta 73, 523 (2007)

    Article  Google Scholar 

  9. S.A. Ruffolo, M.F. La Russa, M. Malagodi, C. Oliviero Rossi, A.M. Palermo, G.M. Crisci, Appl. Phys. A 100, 829 (2010)

    Article  ADS  Google Scholar 

  10. Z. Xiwen, L. Cencen, H. Gaorong, Mater. Sci. Forum 620–622, 707 (2009)

    Google Scholar 

  11. M. Zhang, T. An, X. Liu, X. Hu, G. Sheng, J. Fu, Mater. Lett. 64, 1883 (2010)

    Article  Google Scholar 

  12. Z. Liu, D. Zhou, S. Gong, H. Li, J. Alloys Compd. 475, 840 (2009)

    Article  Google Scholar 

  13. R. Ramaseshan, S. Ramakrishna, J. Am. Ceram. Soc. 90, 1836 (2007)

    Article  Google Scholar 

  14. C.T. Wang, J.C. Lin, Appl. Surf. Sci. 254, 4500 (2008)

    Article  ADS  Google Scholar 

  15. L. Hou, Y.D. Hou, M.K. Zhu, J. Tang, J.B. Liu, H. Wang, H. Yan, Mater. Lett. 59, 197 (2005)

    Article  Google Scholar 

  16. J.Z. Kong, A.D. Li, H.F. Zhai, H. Li, Q.Y. Yan, J. Ma, D. Wu, J. Hazard. Mater. 171, 918 (2009)

    Article  Google Scholar 

  17. PDF 26-500 (ZnTiO3), PDF 78-1509 (TiO2-Rutile), PDF 77-0014 (TiZn2O4), JCPDS 36-1451(ZnO-Hex), PDF 73-1764 (TiO2-Anatase)

  18. Y.V. Kolen’ko, K.A. Kovnir, A.I. Gavrilov, A.G. Garshev, P.E. Meskin, B.R. Churagulov, M. Bouchard, C. Colbeau-Justin, O.I. Lebedev, G.V. Tendelov, M. Yoshimura, J. Phys. Chem. B 109, 20303 (2005)

    Article  Google Scholar 

  19. B.S. Barros, R. Barbosa, N.R. dos Santos, T.S. Barros, M.A. Souza, Inorg. Mater. 42, 1348 (2007)

    Article  Google Scholar 

  20. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, Appl. Surf. Sci. 253, 7497 (2009)

    Article  ADS  Google Scholar 

  21. S. Sedpho, D. Wongratanaphisan, P. Mangkorntong, N. Mangkorntong, S. Choopun, CMU J. Nat. Sci. 7, 99 (2008)

    Google Scholar 

  22. F.J. Manjon, B. Mari, J. Serrano, A.H. Romero, J. Appl. Phys. 97, 053516 (2005)

    Article  ADS  Google Scholar 

  23. B. Cheng, W. Sun, J. Jiao, B. Tian, Y. Xiao, S. Lei, J. Raman Spectrosc. 41, 1221 (2010)

    Article  ADS  Google Scholar 

  24. S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522 (1967)

    Article  ADS  Google Scholar 

  25. T. Santhaveesuk, D. Wongratanaphisan, N. Mangkomontg, S. Choopun, Adv. Mater. Res. 55–57, 641 (2008)

    Article  Google Scholar 

  26. W. Su, J. Zhang, Z. Feng, T. Chen, P. Ying, C. Li, J. Phys. Chem. 112, 7710 (2008)

    Google Scholar 

  27. B. Cheng, J. Jiao, W. Sun, B. Tian, Y. Xiao, S. Lei, Nanotechnology 21, 25704 (2010)

    Article  ADS  Google Scholar 

  28. R. Jothilaskmi, V. Ramakrishnam, R. Thangavel, J. Kumar, A. Sarua, J. Raman Spectrosc. 40, 556 (2009)

    Article  ADS  Google Scholar 

  29. Z. Wang, S.K. Saxena, C.S. Zha, Phys. Rev. B 66, 024103 (2002)

    Article  ADS  Google Scholar 

  30. S.A. Mayen-Hernandez, G. Torres-Delgado, R. Castanedo-Pérez, M. Gutierrez-Villarreal, A. Cruz-Orea, J.G. Mendoza Alvarez, O. Zelaya-Angel, J. Mater. Sci., Mater. Electron. 18, 1127 (2007)

    Article  Google Scholar 

  31. S.-C. Jung, S.-J. Kim, N. Imaishi, Y.-I. Cho, Appl. Catal. B, Environ. 55, 253 (2005)

    Article  Google Scholar 

  32. K.H. Yoon, J. Cho, D.H. Kang, Mater. Res. Bull. 34, 1451 (1999)

    Article  Google Scholar 

  33. L.I. Greene, M. Law, B.D. Yuhas, P. Yang, J. Phys. Chem. C 111, 18451 (2007)

    Article  Google Scholar 

  34. C.W. Zhou, W. Gao, Trans. Electr. Electron. Mater. 11, 1 (2010)

    Article  Google Scholar 

  35. A.M. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 95, 735 (1995)

    Article  Google Scholar 

  36. N. Serpone, J. Photochem. Photobiol. A, Chem. 85, 247 (1995)

    Article  Google Scholar 

  37. K. Vinodgopal, P.V. Kamat, Environ. Sci. Technol. 29, 841 (1995)

    Article  Google Scholar 

  38. L. Yang, Y. Zhang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, J. Raman Spectrosc. 41, 721 (2010)

    Google Scholar 

  39. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G.O. Oskam, Nanotechnology 19, 145605 (2008)

    Article  ADS  Google Scholar 

  40. S.A. Studenikin, N. Golego, M. Cocivera, J. Appl. Phys. 84, 5001 (1998)

    Article  ADS  Google Scholar 

  41. V. Srikant, D.R. Clarke, J. Appl. Phys. 83, 5447 (1998)

    Article  ADS  Google Scholar 

  42. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, L.A. Boatner, J. Appl. Phys. 93, 1 (2003)

    Article  ADS  Google Scholar 

  43. S.V. Bhat, F.L. Deepak, Solid State Commun. 135, 345 (2005)

    Article  ADS  Google Scholar 

  44. K. Mozzami, T.E. Murphy, J.D. Phillips, M.C.-K. Cheung, A.N. Catwright, Semicond. Sci. Technol. 21, 717 (2006)

    Article  ADS  Google Scholar 

  45. J.J. Lu, Y.M. Lu, S.I. Tasi, T.L. Hsiung, H.P. Wang, L.Y. Jang, Opt. Mater. 29, 1548 (2007)

    Article  ADS  Google Scholar 

  46. G.A. Hope, A.J. Bard, J. Phys. Chem. 87, 1979 (1983)

    Article  Google Scholar 

  47. M. Wang, C. Huang, Y. Cao, Q. Yu, W. Guo, Q. Liu, J. Liang, M. Hong, Nanotechnology 20, 285311 (2009)

    Article  Google Scholar 

  48. J.H. Nob, H.S. Han, S. Lee, D.H. Kim, J.H. Park, S. Park, J.Y. Kim, H.S. Jung, H.S. Hong, J. Phys. Chem. C 114, 13867 (2010)

    Google Scholar 

  49. C. Ye, S.S. Pan, X.M. Teng, H.T. Fan, G.H. Li, Appl. Phys. A 90, 375 (2008)

    Article  ADS  Google Scholar 

  50. J. Mrázek, L. Spanhel, G. Chadeyron, V. Matêjec, J. Phys. Chem. C 114, 2843 (2010)

    Article  Google Scholar 

  51. J.S. Jang, P.H. Borse, J.S. Lee, K.T. Lim, O.-S. Jung, E.D. Jeong, J.S. Bae, M.S. Won, H.G. Kim, Bull. Korean Chem. Soc. 30, 3021 (2009)

    Article  Google Scholar 

  52. L. Xu, H. Shen, X. Li, R. Zhu, Chin. Opt. Lett. 7, 953 (2009)

    Article  Google Scholar 

  53. Y. Matsumoto, J. Solid State Chem. 126, 227 (1996)

    Article  ADS  Google Scholar 

  54. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful with M. Guerrero, R. Fragoso, A. Soto, A. Garcia and Dr. M. Becerril for their technical assistance. This work was supported by ICYTDF-México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Zelaya-Angel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Ramírez, E., Mondragón-Chaparro, M. & Zelaya-Angel, O. Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films. Appl. Phys. A 108, 291–297 (2012). https://doi.org/10.1007/s00339-012-6890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6890-x

Keywords

Navigation